1
|
Walboomers JM, Jacobs MV, Manos MM, Bosch
FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ and Muñoz N:
Human papillomavirus is a necessary cause of invasive cervical
cancer worldwide. J Pathol. 189:12–19. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bzhalava D, Eklund C and Dillner J:
International standardization and classification of human
papillomavirus types. Virology. 476:341–344. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kavanagh K, Pollock KG, Potts A, Love J,
Cuschieri K, Cubie H, Robertson C and Donaghy M: Introduction and
sustained high coverage of the HPV bivalent vaccine leads to a
reduction in prevalence of HPV 16/18 and closely related HPV types.
Br J Cancer. 110:2804–2811. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Schiffman M, Castle PE, Jeronimo J,
Rodriguez AC and Wacholder S: Human papillomavirus and cervical
cancer. Lancet. 370:890–907. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Scheffner M: Ubiquitin, E6-AP, and their
role in p53 inactivation. Pharmacol Ther. 78:129–139. 1998.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Hollstein M, Sidransky D, Vogelstein B and
Harris CC: p53 mutations in human cancers. Science. 253:49–53.
1991. View Article : Google Scholar : PubMed/NCBI
|
7
|
Oliner JD, Kinzler KW, Meltzer PS, George
DL and Vogelstein B: Amplification of a gene encoding a
p53-associated protein in human sarcomas. Nature. 358:80–83. 1992.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Bates S and Vousden KH: Mechanisms of
p53-mediated apoptosis. Cell Mol Life Sci. 55:28–37. 1999.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Khoo KH, Verma CS and Lane DP: Drugging
the p53 pathway: Understanding the route to clinical efficacy. Nat
Rev Drug Discov. 13:217–236. 2014. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Soussi T and Wiman KG: Shaping genetic
alterations in human cancer: The p53 mutation paradigm. Cancer
Cell. 12:303–312. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Oliner JD, Pietenpol JA, Thiagalingam S,
Gyuris J, Kinzler KW and Vogelstein B: Oncoprotein MDM2 conceals
the activation domain of tumour suppressor p53. Nature.
362:857–860. 1993. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Ashkroft M and Vousden K: Regulation of
p53 stability. Oncogene. 18:7637–7643. 1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Michael D and Oren M: The p53-Mdm2 module
and the ubiquitin system. Semi Cancer Biol. 13:49–58. 2003.
View Article : Google Scholar
|
14
|
Freedman D, Wu L and Levine AJ: Functions
of the MDM2 oncoprotein. Cell Mol Life Sci. 5:96–107. 1999.
View Article : Google Scholar
|
15
|
Chène P, Fuchs J, Bohn J,
Garcı́a-Echeverrı́a C, Furet P and Fabbro D: A small synthetic
peptide, which inhibits the p53-hdm2 interaction, stimulates the
p53 pathway in tumour cell lines. J Mol Biol. 299:245–253. 2000.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang RW and Wang H: Antisense
oligonucleotide inhibitors of MDM2 oncogene expression. Methods Mol
Med. 85:205–222. 2003.PubMed/NCBI
|
17
|
Vassilev L, Vu BT, Graves B, Carvajal D,
Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et
al: In vivo activation of the p53 pathway by small-molecule
antagonists of MDM2. Science. 303:844–848. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hu CM, Zheng LY, Pei YZ and Bai X:
Synthesis of novel 3-aryl isoindolinone derivatives. Chem Res Chin
Univ. 29:487–494. 2013. View Article : Google Scholar
|
19
|
Hu CM: Design, synthesis and anticancer
activity of novel 3-aryl isoindolinone derivatives: [D]. Changchun
Jilin Univ; 2012
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Fang M, Wu XC and Huang W: Raloxifene
upregulated mesangial cell MMP-2 activity via ER-β through
transcriptional regulation. Cell Biochem Biophys. 67:607–613. 2013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Li MO, Sarkisian MR, Mehal WZ, Rakic P and
Flavell RA: Phosphatidylserine receptor is required for clearance
of apoptotic cells. Science. 302:1560–1563. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yin C, Knudson CM, Korsmeyer SJ and Van
Dyke T: Bax suppresses tumorigenesis and stimulates apoptosis in
vivo. Nature. 385:637–640. 1997. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Miyashita T and Reed JC: Tumor suppressor
p53 is a direct transcriptional activator of the human bax gene.
Cell. 80:293–299. 1995. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dasari S, Wudayagiri R and Valluru L:
Cervical cancer: Biomarkers for diagnosis and treatment. Clin Chim
Acta. 445:7–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Canavan T and Doshi NR: Cervical cancer.
Am Fam Physician. 61:1369–1376. 2000.PubMed/NCBI
|
27
|
Luhn P, Walker J, Schiffman M, Zuna RE,
Dunn ST, Gold MA, Smith K, Mathews C, Allen RA, Zhang R, et al: The
role of co-factors in the progression from human papillomavirus
infection to cervical cancer. Gynecol Oncol. 128:265–270. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Arbyn M, Anttila A, Jordan J, Ronco G,
Schenck U, Segnan N, Wiener H, Herbert A and von Karsa L: European
guidelines for quality assurance in cervical cancer screening.
Second edition-summary document. Ann Oncol. 21:448–458. 2010.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Medeiros LR, Rosa DD, da Rosa MI, Bozzetti
MC and Zanini RR: Efficacy of human papillomavirus vaccines: A
systematic quantitative review. Int J Gynecol Cancer. 19:1166–1176.
2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cuzick J, Arbyn M, Sankaranarayanan R, Tsu
V, Ronco G, Mayrand MH, Dillner J and Meijer CJ: Overview of human
papillomavirus-based and other novel options for cervical cancer
screening in developed and developing countries. Vaccine. 26 (Suppl
10):k29–k41. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Segovia-Mendoza M, Jurado R, Mir R, Medina
LA, Prado-Garcia H and Garcia-Lopez P: Antihormonal agents as a
strategy to improve the effect of chemo-radiation in cervical
cancer: In vitro and in vivo study. BMC Cancer. 15:212015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Cancer Genome Atlas Research Network:
Albert Einstein College of Medicine; Analytical Biological
Services; Barretos Cancer Hospital; Baylor College of Medicine;
Beckman Research Institute of City of Hope; Buck Institute for
Research on Aging; Canada's Michael Smith Genome Sciences Centre;
Harvard Medical School; Helen F. Graham Cancer Center &Research
Institute at Christiana Care Health Services, ; et al Integrated
genomic and molecular characterization of cervical cancer. Nature.
543:378–384. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhao Y, Aguilar A, Bernard D and Wang SM:
Small-molecule inhibitors of the MDM2-p53 protein-protein
interaction (MDM2 Inhibitors) in clinical trials for cancer
treatment. J Med Chem. 58:1038–1052. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bunz F, Dutriaux A, Lengauer C, Waldman T,
Zhou S, Brown JP, Sedivy JM, Kinzler KW and Vogelstein B:
Requirement for p53 and p21 to sustain G2 arrest after DNA damage.
Science. 282:1497–1501. 1998. View Article : Google Scholar : PubMed/NCBI
|
35
|
Taylor RC, Cullen SP and Martin SJ:
Apoptosis: Controlled demolition at the cellular level. Nat Rev Mol
Cell Biol. 9:231–241. 2008. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Zhou BB and Elledge SJ: The DNA damage
response: Putting checkpoints in perspective. Nature. 408:433–439.
2000. View
Article : Google Scholar : PubMed/NCBI
|
37
|
Bucher N and Britten CD: G2 checkpoint
abrogation and checkpoint kinase-1 targeting in the treatment of
cancer. Br J Cancer. 98:523–528. 2008. View Article : Google Scholar : PubMed/NCBI
|