1
|
Wang Y, Yu W, Zhu J, Wang J, Xia K, Liang
C and Tao H: Anti-CD166/4-1BB chimeric antigen receptor T cell
therapy for the treatment of osteosarcoma. J Exp Clin Cancer Res.
38:1682019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gvozdenovic A, Boro A, Born W, Muff R and
Fuchs B: A bispecific antibody targeting IGF-IR and EGFR has tumor
and metastasis suppressive activity in an orthotopic xenograft
osteosarcoma mouse model. Am J Cancer Res. 7:1435–1449.
2017.PubMed/NCBI
|
3
|
McCleese JK, Bear MD, Kulp SK, Mazcko C,
Khanna C and London CA: Met interacts with EGFR and Ron in canine
osteosarcoma. Vet Comp Oncol. 11:124–139. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xi Y, Fowdur M, Liu Y, Wu H, He M and Zhao
J: Differential expression and bioinformatics analysis of circRNA
in osteosarcoma. Biosci Rep. 39(pii): BSR201815142019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pahl JH, Ruslan SE, Buddingh EP, Santos
SJ, Szuhai K, Serra M, Gelderblom H, Hogendoorn PC, Egeler RM,
Schilham MW and Lankester AC: Anti-EGFR antibody cetuximab enhances
the cytolytic activity of natural killer cells toward osteosarcoma.
Clin Cancer Res. 18:432–441. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang Q, Cai J, Wang J, Xiong C and Zhao J:
MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion.
Tumour Biol. 35:12743–12748. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zou J, Lin J, Li C, Zhao R, Fan L, Yu J
and Shao J: Ursolic acid in cancer treatment and metastatic
chemoprevention: From synthesized derivatives to nanoformulations
in preclinical studies. Curr Cancer Drug Targets. 19:245–256. 2019.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Zong L, Cheng G, Liu S, Pi Z, Liu Z and
Song F: Reversal of multidrug resistance in breast cancer cells by
a combination of ursolic acid with doxorubicin. J Pharm Biomed
Anal. 165:268–275. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sommerwerk S, Heller L, Kuhfs J and Csuk
R: Urea derivates of ursolic, oleanolic and maslinic acid induce
apoptosis and are selective cytotoxic for several human tumor cell
lines. Eur J Med Chem. 119:1–16. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rocha TG, Lopes SC, Cassali GD, Ferreira
E, Veloso ES, Leite EA, Braga FC, Ferreira LA, Balvay D,
Garofalakis A, et al: Evaluation of antitumor activity of
long-circulating and ph-sensitive liposomes containing ursolic acid
in animal models of breast tumor and gliosarcoma. Integr Cancer
Ther. 15:512–524. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Prasad S, Yadav VR, Sung B, Gupta SC,
Tyagi AK and Aggarwal BB: Ursolic acid inhibits the growth of human
pancreatic cancer and enhances the antitumor potential of
gemcitabine in an orthotopic mouse model through suppression of the
inflammatory microenvironment. Oncotarget. 7:13182–13196. 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Achiwa Y, Hasegawa K, Komiya T and Udagawa
Y: Ursolic acid induces Bax-dependent apoptosis through the
caspase-3 pathway in endometrial cancer SNG-II cells. Oncol Rep.
13:51–57. 2005.PubMed/NCBI
|
13
|
Lin CW, Chin HK, Lee SL, Chiu CF, Chung
JG, Lin ZY, Wu CY, Liu YC, Hsiao YT, Feng CH, et al: Ursolic acid
induces apoptosis and autophagy in oral cancer cells. Environ
Toxicol. May 7–2019.(Epub ahead of print). View Article : Google Scholar
|
14
|
Chen CJ, Shih YL, Yeh MY, Liao NC, Chung
HY, Liu KL, Lee MH, Chou PY, Hou HY, Chou JS and Chung JG: Ursolic
acid induces apoptotic cell death through AIF and endo G release
through a mitochondria-dependent pathway in NCI-H292 human lung
cancer cells in vitro. In Vivo. 33:383–391. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hsieh YS, Chu SC, Yang SF, Chen PN, Liu YC
and Lu KH: Silibinin suppresses human osteosarcoma MG-63 cell
invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of
MMP-2. Carcinogenesis. 28:977–987. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ren Y, Guo F, Chen A, Deng R and Wang J:
Involvement of MMP-2 in adriamycin resistance dependent on ERK1/2
signal pathway in human osteosarcoma MG-63 cells. J Huazhong Univ
Sci Technolog Med Sci. 32:82–86. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen F, Zeng Y, Qi X, Chen Y, Ge Z, Jiang
Z, Zhang X, Dong Y, Chen H and Yu Z: Targeted salinomycin delivery
with EGFR and CD133 aptamers based dual-ligand lipid-polymer
nanoparticles to both osteosarcoma cells and cancer stem cells.
Nanomedicine. 14:2115–2127. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zahonero C and Sanchez-Gomez P:
EGFR-dependent mechanisms in glioblastoma: Towards a better
therapeutic strategy. Cell Mol Life Sci. 71:3465–3488. 2014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Kang SY, Yoon SY, Roh DH, Jeon MJ, Seo HS,
Uh DK, Kwon YB, Kim HW, Han HJ, Lee HJ and Lee JH: The
anti-arthritic effect of ursolic acid on zymosan-induced acute
inflammation and adjuvant-induced chronic arthritis models. J Pharm
Pharmacol. 60:1347–1354. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wen JH, Wei XH, Sheng XY, Zhou DQ, Peng
HW, Lu YN and Zhou J: Effect of Ursolic acid on breast cancer
resistance protein-mediated transport of rosuvastatin in vivo and
vitro. Chin Med Sci J. 30:218–225. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Dar BA, Lone AM, Shah WA and Qurishi MA:
Synthesis and screening of ursolic acid-benzylidine derivatives as
potential anti-cancer agents. Eur J Med Chem. 111:26–32. 2016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wiemann J, Heller L and Csuk R: Targeting
cancer cells with oleanolic and ursolic acid derived hydroxamates.
Bioorg Med Chem Lett. 26:907–909. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xiang F, Pan C, Kong Q, Wu R, Jiang J,
Zhan Y, Xu J, Gu X and Kang X: Ursolic acid inhibits the
proliferation of gastric cancer cells by targeting miR-133a. Oncol
Res. 22:267–273. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Freeman SS, Allen SW, Ganti R, Wu J, Ma J,
Su X, Neale G, Dome JS, Daw NC and Khoury JD: Copy number gains in
EGFR and copy number losses in PTEN are common events in
osteosarcoma tumors. Cancer. 113:1453–1461. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kitz K, Windischhofer W, Leis HJ, Huber E,
Kollroser M and Malle E: 15-Deoxy-Δ12,14-prostaglandin J2 induces
Cox-2 expression in human osteosarcoma cells through MAPK and EGFR
activation involving reactive oxygen species. Free Radic Biol Med.
50:854–865. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sevelda F, Mayr L, Kubista B, Lotsch D,
van Schoonhoven S, Windhager R, Pirker C, Micksche M and Berger W:
EGFR is not a major driver for osteosarcoma cell growth in vitro
but contributes to starvation and chemotherapy resistance. J Exp
Clin Cancer Res. 34:1342015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tong B, Xu Y, Zhao J, Chen M, Zhong W,
Xing J and Wang M: Prognostic role of circulating tumor cells in
patients with EGFR-mutated or ALK-rearranged non-small cell lung
cancer. Thora Cancer. 9:640–645. 2018. View Article : Google Scholar
|
28
|
Cheng C, Deng L and Li R: The
immunogenicity and anti-tumor efficacy of a rationally designed
EGFR vaccine. Cell Physiol Biochem. 46:46–56. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lo HW: EGFR-targeted therapy in malignant
glioma: Novel aspects and mechanisms of drug resistance. Curr Mol
Pharmacol. 3:37–52. 2010. View Article : Google Scholar : PubMed/NCBI
|