1
|
Alowaidi F, Hashimi SM, Nguyen M, Meshram
M, Alqurashi N, Cavanagh BL, Bellette B, Ivanovski S, Meedenyia A
and Wood SA: Investigating the role of CRIPTO-1 (TDGF-1) in
glioblastoma multiforme U87 cell line. J Cell Biochemist. Nov
13–2018.(Epub ahead of print) doi: 10.1002/jcb.28015.
|
2
|
Bianco C, Strizzi L, Normanno N, Khan N
and Salomon DS: Cripto-1: An oncofetal gene with many faces. Curr
Top Dev Biol. 67:85–133. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Castro NP, Rangel MC, Nagaoka T, Karasawa
H, Salomon DS and Bianco C: Cripto-1: At the crossroads of
embryonic stem cells and cancer. In: Embryonic stem cells-basic
biology to bioengineering. InTech. 2011.
|
4
|
de Castro NP, Rangel MC, Nagaoka T,
Salomon DS and Bianco C: Cripto-1: An embryonic gene that promotes
tumorigenesis. Future Oncol. 6:1127–1142. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kelber J, Panopoulos A, Shani G, Booker
EC, Belmonte JC, Vale WW and Gray PC: Blockade of Cripto binding to
cell surface GRP78 inhibits oncogenic Cripto signaling via
MAPK/PI3K and Smad2/3 pathways. Oncogene. 28:2324–2336. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Huang Da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Huang Da W, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nagaoka T, Karasawa H, Castro NP, Rangel
MC, Salomon DS and Bianco C: An evolving web of signaling networks
regulated by Cripto-1. Growth Factors. 30:13–21. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Normanno N, De Luca A, Maiello M, Bianco
C, Mancino M, Strizzi L, Arra C, Ciardiello F, Agrawal S and
Salomon DS: CRIPTO-1: A novel target for therapeutic intervention
in human carcinoma. Int J Oncol. 25:1013–1020. 2004.PubMed/NCBI
|
10
|
Golubovskaya VM, Gross S, Kaur AS, Wilson
RI, Xu LH, Yang XH and Cance WG: Simultaneous inhibition of focal
adhesion kinase and SRC enhances detachment and apoptosis in colon
cancer cell lines. Mol Cancer Res. 1:755–764. 2003.PubMed/NCBI
|
11
|
Evans IM, Yamaji M, Britton G, Pellet-Many
C, Lockie C, Zachary IC and Frankel P: Neuropilin-1 signaling
through p130Cas tyrosine phosphorylation is essential for growth
factor-dependent migration of glioma and endothelial cells. Mol
Cell Biol. 31:1174–1185. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Huveldt D, Lewis-Tuffin LJ, Carlson BL,
Schroeder MA, Rodriguez F, Giannini C, Galanis E, Sarkaria JN and
Anastasiadis PZ: Targeting Src family kinases inhibits
bevacizumab-induced glioma cell invasion. PLoS One. 8:e565052013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Jiang T and Qiu Y: Interaction between Src
and a C-terminal proline-rich motif of Akt is required for Akt
activation. J Biol Chem. 278:15789–15793. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sonoda Y, Watanabe S, Matsumoto Y,
Aizu-Yokota E and Kasahara T: FAK is the upstream signal protein of
the phosphatidylinositol 3-kinase-Akt survival pathway in hydrogen
peroxide-induced apoptosis of a human glioblastoma cell line. J
Biol Chem. 274:10566–10570. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ishiuchi S, Yoshida Y, Sugawara K, Aihara
M, Ohtani T, Watanabe T, Saito N, Tsuzuki K, Okado H, Miwa A, et
al: Ca2+-permeable AMPA receptors regulate growth of human
glioblastoma via Akt activation. J Neurosci. 27:7987–8001. 2007.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Vincent EE, Elder DJE, Thomas EC, Phillips
L, Morgan C, Pawade J, Sohail M, May MT, Hetzel MR and Tavaré JM:
Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt
protein kinase activity in human non-small cell lung cancer. Br J
Cancer. 104:1755–1761. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Conus NM, Hannan KM and Cristiano BE:
Direct identification of tyrosine 474 as a regulatory
phosphorylation site for the Akt protein kinase. J Biol Chem.
277:38021–38028. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kesanakurti D, Chetty C, Rajasekhar
Maddirela D, Gujrati M and Rao JS: Functional cooperativity by
direct interaction between PAK4 and MMP-2 in the regulation of
anoikis resistance, migration and invasion in glioma. Cell Death
Dis. 3:e4452012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mohammadi M, Dikic I, Sorokin A, Burgess
WH, Jaye M and Schlessinger J: Identification of six novel
autophosphorylation sites on fibroblast growth factor receptor 1
and elucidation of their importance in receptor activation and
signal transduction. Mol Cell Biol. 16:977–989. 1996. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lattanzio R, Piantelli M and Falasca M:
Role of phospholipase C in cell invasion and metastasis. Adv Biol
Regul. 53:309–318. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Knizetova P, Ehrmann J, Hlobilkova A,
Vancova I, Kalita O, Kolar Z and Bartek J: Autocrine regulation of
glioblastoma cell cycle progression, viability and radioresistance
through the VEGF-VEGFR2 (KDR) interplay. Cell Cycle. 7:2553–2561.
2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sawamiphak S, Seidel S, Essmann CL,
Wilkinson GA, Pitulescu ME, Acker T and Acker-Palmer A: Ephrin-B2
regulates VEGFR2 function in developmental and tumour angiogenesis.
Nature. 465:487–491. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dellinger MT and Brekken RA:
Phosphorylation of Akt and ERK1/2 is required for
VEGF-A/VEGFR2-induced proliferation and migration of lymphatic
endothelium. PLoS One. 6:e289472011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hamerlik P, Lathia JD, Rasmussen R and Wu
Q: Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma
stem-like cell viability and tumor growth. J Exp Med. 209:507–520.
2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Napione L, Pavan S, Veglio A, Picco A,
Boffetta G, Celani A, Seano G, Primo L, Gamba A and Bussolino F:
Unraveling the influence of endothelial cell density on VEGF-A
signaling. Blood. 119:5599–5607. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fan CF, Miao Y, Lin XY, Zhang D and Wang
EH: Expression of a phosphorylated form of ATF4 in lung and
non-small cell lung cancer tissues. Tumour Biol. 35:765–771. 2014.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Roybal CN, Hunsaker LA, Barbash O, Vander
Jagt DL and Abcouwer SF: The oxidative stressor arsenite activates
vascular endothelial growth factor mRNA transcription by an
ATF4-dependent mechanism. J Biol Chem. 280:20331–20339. 2005.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Daniel P, Filiz G, Brown DV, Hollande F,
Gonzales M, D'Abaco G, Papalexis N, Phillips WA, Malaterre J,
Ramsay RG and Mantamadiotis T: Selective CREB-dependent cyclin
expression mediated by the PI3K and MAPK pathways supports glioma
cell proliferation. Oncogenesis. 3:e1082014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tong JJ, Yan Z, Jian R, Tao H, Hui OT and
Jian C: RhoA regulates invasion of glioma cells via the c-Jun
NH2-terminal kinase pathway under hypoxia. Oncol Lett. 4:495–500.
2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Parat MO and Riggins GJ: Caveolin-1,
caveolae, and glioblastoma. Neuro Oncol. 14:679–688. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Deng X, Gao F, Flagg T, Anderson J and May
WS: Bcl2's flexible loop domain regulates p53 binding and survival.
Mol Cell Biol. 26:4421–4434. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Renganathan H, Vaidyanathan H, Knapinska A
and Ramos JW: Phosphorylation of PEA-15 switches its binding
specificity from ERK/MAPK to FADD. Biochem J. 390:729–735. 2005.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Sulzmaier FJ, Valmiki MK, Nelson DA,
Caliva MJ, Geerts D, Matter ML, White EP and Ramos JW: PEA-15
potentiates H-Ras-mediated epithelial cell transformation through
phospholipase D. Oncogene. 31:3547–3560. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gray PC and Vale W: Cripto/GRP78
modulation of the TGF-β pathway in development and oncogenesis.
FEBS Lett. 586:1836–1845. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Klauzinska M, Castro NP, Rangel MC, Spike
BT, Gray PC, Bertolette D, Cuttitta F and Salomon D: The
multifaceted role of the embryonic gene Cripto-1 in cancer, stem
cells and epithelial-mesenchymal transition. Semin Cancer Biol.
29:51–58. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Luo M and Guan JL: Focal adhesion kinase:
A prominent determinant in breast cancer initiation, progression
and metastasis. Cancer Lett. 289:127–139. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Parsons JT: Focal adhesion kinase: The
first ten years. J Cell Sci. 116:1409–1416. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mitra SK and Schlaepfer DD:
Integrin-regulated FAK-Src signaling in normal and cancer cells.
Curr Opin Cell Biol. 18:516–523. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Park JB, Lee CS, Jang JH, Ghim J, Kim YJ,
You S, Hwang D, Suh PG and Ryu SH: Phospholipase signalling
networks in cancer. Nat Rev Cancer. 12:782–792. 2012. View Article : Google Scholar : PubMed/NCBI
|