Role of non‑coding RNA in pancreatic cancer (Review)
- Authors:
- Yinghao Lv
- Shuai Huang
-
Affiliations: Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China - Published online on: August 16, 2019 https://doi.org/10.3892/ol.2019.10758
- Pages: 3963-3973
-
Copyright: © Lv et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cech TR and Steitz JA: The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 157:77–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peng JF, Zhuang YY, Huang FT and Zhang SN: Noncoding RNAs and pancreatic cancer. World J Gastroenterol. 22:801–814. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vorvis C, Hatziapostolou M, Mahurkar-Joshi S, Koutsioumpa M, Williams J, Donahue TR, Poultsides GA, Eibl G and Iliopoulos D: Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 310:G1124–G1137. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chandra Gupta S and Nandan Tripathi Y: Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int J Cancer. 140:1955–1967. 2017. View Article : Google Scholar : PubMed/NCBI | |
Duguang L, Jin H, Xiaowei Q, Peng X, Xiaodong W, Zhennan L, Jianjun Q and Jie Y: The involvement of lncRNAs in the development and progression of pancreatic cancer. Cancer Biol Ther. 18:927–936. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fu Z, Chen C, Zhou Q, Wang Y, Zhao Y, Zhao X, Li W, Zheng S, Ye H, Wang L, et al: LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9. Cancer Lett. 410:68–81. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Gong N, Ma Z, Miao X, Chen J, Cao Y and Zhang G: LncRNA ZEB2-AS1 promotes pancreatic cancer cell growth and invasion through regulating the miR-204/HMGB1 axis. Int J Biol Macromol. 116:545–551. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chitkara D, Mittal A and Mahato RI: miRNAs in pancreatic cancer: Therapeutic potential, delivery challenges and strategies. Adv Drug Deliv Rev. 81:34–52. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Wan D, Zheng D, Zheng Q, Wu F and Zhi Q: Long non-coding RNA UCA1 promotes the tumorigenesis in pancreatic cancer. Biomed Pharmacother. 83:1220–1226. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Sarkar FH: MicroRNA targeted therapeutic approach for pancreatic cancer. Int J Biol Sci. 12:326–337. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiong G, Feng M, Yang G, Zheng S, Song X, Cao Z, You L, Zheng L, Hu Y, Zhang T and Zhao Y: The underlying mechanisms of non-coding RNAs in the chemoresistance of pancreatic cancer. Cancer Lett. 397:94–102. 2017. View Article : Google Scholar : PubMed/NCBI | |
Abreu FB, Liu X and Tsongalis GJ: miRNA analysis in pancreatic cancer: The Dartmouth experience. Clin Chem Lab Med. 55:755–762. 2017. View Article : Google Scholar : PubMed/NCBI | |
Batchu RB, Gruzdyn OV, Qazi AM, Kaur J, Mahmud EM, Weaver DW and Gruber SA: Enhanced phosphorylation of p53 by microRNA-26a leading to growth inhibition of pancreatic cancer. Surgery. 158:981–987. 2015. View Article : Google Scholar : PubMed/NCBI | |
Czech B and Hannon GJ: One loop to rule them all: The ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci. 41:324–337. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guil S and Esteller M: RNA-RNA interactions in gene regulation: The coding and noncoding players. Trends Biochem Sci. 40:248–256. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ferreira HJ and Esteller M: Non-coding RNAs, epigenetics, and cancer: Tying it all together. Cancer Metastasis Rev. 37:55–73. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lai X, Wang M, McElyea SD, Sherman S, House M and Korc M: A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 393:86–93. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li A, Yu J, Kim H, Wolfgang CL, Canto MI, Hruban RH and Goggins M: MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res. 19:3600–3610. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang J, Yao M, Li Y, Zhao D, Hu S, Cui X, Liu G, Shi Q, Wang Y and Yang Y: MicroRNAs for osteosarcoma in the mouse: A meta-analysis. Oncotarget. 7:85650–85674. 2016. View Article : Google Scholar : PubMed/NCBI | |
Delás MJ, Sabin LR, Dolzhenko E, Knott SR, Munera Maravilla E, Jackson BT, Wild SA, Kovacevic T, Stork EM, Zhou M, et al: lncRNA requirements for mouse acute myeloid leukemia and normal differentiation. Elife. 6:e256072017. View Article : Google Scholar : PubMed/NCBI | |
He L, Tian DA, Li PY and He XX: Mouse models of liver cancer: Progress and recommendations. Oncotarget. 6:23306–23322. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ishihara Y, Tsuno S, Kuwamoto S, Yamashita T, Endo Y, Miura K, Miura Y, Sato T, Hasegawa J and Miura N: Tumor-suppressive effects of atelocollagen-conjugated hsa-miR-520d-5p on un-differentiated cancer cells in a mouse xenograft model. BMC Cancer. 16:4152016. View Article : Google Scholar : PubMed/NCBI | |
Wei WF, Han LF, Liu D, Wu LF, Chen XJ, Yi HY, Wu XG, Zhong M, Yu YH, Liang L and Wang W: Orthotopic xenograft mouse model of cervical cancer for studying the role of MicroRNA-21 in promoting lymph node metastasis. Int J Gynecol Cancer. 27:1587–1595. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Zhu W and Wu W: MicroRNAs change the landscape of cancer resistance. Methods Mol Biol. 1699:83–89. 2018. View Article : Google Scholar : PubMed/NCBI | |
Taucher V, Mangge H and Haybaeck J: Non-coding RNAs in pancreatic cancer: Challenges and opportunities for clinical application. Cell Oncol (Dordr). 39:295–318. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moriya C, Taniguchi H, Miyata K, Nishiyama N, Kataoka K and Imai K: Inhibition of PRDM14 expression in pancreatic cancer suppresses cancer stem-like properties and liver metastasis in mice. Carcinogenesis. 38:638–648. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun XJ, Liu BY, Yan S, Jiang TH, Cheng HQ, Jiang HS, Cao Y and Mao AW: MicroRNA-29a promotes pancreatic cancer growth by inhibiting tristetraprolin. Cell Physiol Biochem. 37:707–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L, Zhuang L, Luo J, Chen H, Liu L, et al: MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology. 145:1133–1143.e12. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Zheng H, Chan MT and Wu WK: HULC: An oncogenic long non-coding RNA in human cancer. J Cell Mol Med. 21:410–417. 2017. View Article : Google Scholar : PubMed/NCBI | |
Volinia S: Unexpected findings of variability in microRNAs suggest roles in human genetics. Genome Med. 4:692012. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Sun C, Hu X, Zhan H, Zou H, Feng Y, Qiu F, Zhang S, Wu L and Zhang B: MicroRNA-195 suppresses the progression of pancreatic cancer by targeting DCLK1. Cell Physiol Biochem. 44:1867–1881. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Li Q, Wu J, Hu W, Jiang J, Shi L, Yang X, Zhu D, Ji M and Wu C: MiR-629 promotes human pancreatic cancer progression by targeting FOXO3. Cell Death Dis. 8:e31542017. View Article : Google Scholar : PubMed/NCBI | |
Yan L, Zhang J, Guo D, Ma J, Shui SF and Han XW: IL-21R functions as an oncogenic factor and is regulated by the lncRNA MALAT1/miR-125a-3p axis in gastric cancer. Int J Oncol. 54:7–16. 2019.PubMed/NCBI | |
Wang W, Zhao L, Wei X, Wang L, Liu S, Yang Y, Wang F, Sun G, Zhang J, Ma Y, et al: MicroRNA-320a promotes 5-FU resistance in human pancreatic cancer cells. Sci Rep. 6:276412016. View Article : Google Scholar : PubMed/NCBI | |
Vassaux G, Angelova A, Baril P, Midoux P, Rommelaere J and Cordelier P: The promise of gene therapy for pancreatic cancer. Hum Gene Ther. 27:127–133. 2016. View Article : Google Scholar : PubMed/NCBI | |
He Y, Hu H, Wang Y, Yuan H, Lu Z, Wu P, Liu D, Tian L, Yin J, Jiang K and Miao Y: ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell Physiol Biochem. 48:838–846. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang J, Huang S, Zhu X, Liu J, Yang N, Song D, Wu R, Deng W, Skogerbø G, et al: Systematic identification and characterization of chicken (Gallus gallus) ncRNAs. Nucleic Acids Res. 37:6562–6574. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Feng L, Wu W, Weng T, Hu C, Hong B, Wang FXC, Shen L, Wang Q, Jin X and Yao H: MicroRNA expression profiling of pancreatic cancer cell line L3.6p1 following B7-H4 knockdown. Cell Physiol Biochem. 44:494–504. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tutar Y: miRNA and cancer; computational and experimental approaches. Curr Pharm Biotechnol. 15:4292014. View Article : Google Scholar : PubMed/NCBI | |
Meller VH, Joshi SS and Deshpande N: Modulation of chromatin by noncoding RNA. Annu Rev Genet. 49:673–695. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li M, Radvanyi L, Yin B, Li J, Chivukula R, Lin K, Lu Y, Shen J, Chang DZ, Li D, et al: Downregulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth. Clin Cancer Res. 23:5892–5911. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang X, Wen C, Huo Z, Wang W, Zhan Q, Cheng D, Chen H, Deng X, Peng C and Shen B: Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelial-mesenchymal transition to promote metastasis in pancreatic cancer. Mol Cancer. 16:1692017. View Article : Google Scholar : PubMed/NCBI | |
Hancock MH and Skalsky RL: Roles of non-coding RNAs during herpesvirus infection. Curr Top Microbiol Immunol. 419:243–280. 2018.PubMed/NCBI | |
Farshidfar F, Zheng S, Gingras MC, Newton Y, Shih J, Robertson AG, Hinoue T, Hoadley KA, Gibb EA, Roszik J, et al: Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep. 18:2780–2794. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ and Kalluri R: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 546:498–503. 2017. View Article : Google Scholar : PubMed/NCBI | |
Binenbaum Y, Na'ara S and Gil Z: Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat. 23:55–68. 2015. View Article : Google Scholar : PubMed/NCBI | |
Repoila F and Darfeuille F: Small regulatory non-coding RNAs in bacteria: Physiology and mechanistic aspects. Biol Cell. 101:117–131. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gu DN, Jiang MJ, Mei Z, Dai JJ, Dai CY, Fang C, Huang Q and Tian L: microRNA-7 impairs autophagy-derived pools of glucose to suppress pancreatic cancer progression. Cancer Lett. 400:69–78. 2017. View Article : Google Scholar : PubMed/NCBI | |
Karamitopoulou E, Haemmig S, Baumgartner U, Schlup C and Wartenberg M: MicroRNA dysregulation in the tumor microenvironment influences the phenotype of pancreatic cancer. Mod Pathol. 30:1116–1125. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, Ronning P, Reuland B, Guenther K, Beadnell TC, et al: PVT1 dependence in cancer with MYC copy-number increase. Nature. 512:82–86. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Wang P, Fu Y, Liu X, Xu W, Wei J, Gao W, Jiang K, Wu J and Miao Y: MicroRNA-217 inhibits cell proliferation, invasion and migration by targeting Tpd52l2 in human pancreatic adenocarcinoma. Oncol Rep. 38:3567–3573. 2017.PubMed/NCBI | |
Gayral M, Jo S, Hanoun N, Vignolle-Vidoni A, Lulka H, Delpu Y, Meulle A, Dufresne M, Humeau M, Chalret du Rieu M, et al: MicroRNAs as emerging biomarkers and therapeutic targets for pancreatic cancer. World J Gastroenterol. 20:11199–11209. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hao J, Zhang S, Zhou Y, Liu C, Hu X and Shao C: MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer. Biochem Biophys Res Commun. 406:552–557. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hong L, Yang Z, Ma J and Fan D: Function of miRNA in controlling drug resistance of human cancers. Curr Drug Targets. 14:1118–1127. 2013. View Article : Google Scholar : PubMed/NCBI | |
Humeau M, Torrisani J and Cordelier P: miRNA in clinical practice: Pancreatic cancer. Clin Biochem. 46:933–936. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kokuryo T, Hibino S, Suzuki K, Watanabe K, Yokoyama Y, Nagino M, Senga T and Hamaguchi M: Nek2 siRNA therapy using a portal venous port-catheter system for liver metastasis in pancreatic cancer. Cancer Sci. 107:1315–1320. 2016. View Article : Google Scholar : PubMed/NCBI | |
Andersen PR, Tirian L, Vunjak M and Brennecke J: A heterochromatin-dependent transcription machinery drives piRNA expression. Nature. 549:54–59. 2017. View Article : Google Scholar : PubMed/NCBI | |
Charlotte S: piRNAs power sperm development in the adult. Biol Reprod. 94:2016. | |
Gao ZQ, Wang JF, Chen DH, Ma XS, Yang W, Zhe T and Dang XW: Long non-coding RNA GAS5 antagonizes the chemoresistance of pancreatic cancer cells through down-regulation of miR-181c-5p. Biomed Pharmacother. 97:809–817. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gu L, Zhang J, Shi M, Zhan Q, Shen B and Peng C: lncRNA MEG3 had anti-cancer effects to suppress pancreatic cancer activity. Biomed Pharmacother. 89:1269–1276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Peng W and Jiang A: Long noncoding RNA CCDC26 as a potential predictor biomarker contributes to tumorigenesis in pancreatic cancer. Biomed Pharmacother. 83:712–717. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang SZ, Xu F, Zhou T, Zhao X, McDonald JM and Chen Y: The long non-coding RNA HOTAIR enhances pancreatic cancer resistance to TNF-related apoptosis-inducing ligand. J Biol Chem. 292:10390–10397. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yang Z, Trottier J, Barbier O and Wang L: Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology. 65:604–615. 2017. View Article : Google Scholar : PubMed/NCBI | |
Volinia S, Visone R, Galasso M, Rossi E and Croce CM: Identification of microRNA activity by targets' reverse EXpression. Bioinformatics. 26:91–97. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martens-Uzunova ES, Böttcher R, Croce CM, Jenster G, Visakorpi T and Calin GA: Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 65:1140–1151. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vallot C, Patrat C, Collier AJ, Huret C, Casanova M, Liyakat Ali TM, Tosolini M, Frydman N, Heard E, Rugg-Gunn PJ and Rougeulle C: XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell. 20:102–111. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie VK, Li Z, Yan Y, Jia Z, Zuo X, Ju Z, Wang J, Du J, Xie D, Xie K and Wei D: DNA-Methyltransferase 1 induces dedifferentiation of pancreatic cancer cells through silencing of Kruppel-Like factor 4 expression. Clin Cancer Res. 23:5585–5597. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou DD, Liu XF, Lu CW, Pant OP and Liu XD: Long non-coding RNA PVT1: Emerging biomarker in digestive system cancer. Cell Prolif. Oct 12–2017.(Epub ahead of print). doi: 10.1111/cpr.12398. View Article : Google Scholar | |
Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, Kim S and Safe S: HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 32:1616–1625. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z, Wang R, Feng J and Luo Y: Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization. Stroke. 48:2211–2221. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Pan J, Zhang L, Wei Y and Wang C: Long non-coding RNA CRNDE sponges miR-384 to promote proliferation and metastasis of pancreatic cancer cells through upregulating IRS1. Cell Prolif. Sep 21–2017.(Epub ahead of print). doi: 10.1111/cpr.12389. View Article : Google Scholar | |
Pang EJ, Yang R, Fu XB and Liu YF: Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol. 36:2403–2407. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, et al: The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res. 111:56–65. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heiler S, Wang Z and Zöller M: Pancreatic cancer stem cell markers and exosomes-the incentive push. World J Gastroenterol. 22:5971–6007. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fuschi P, Maimone B, Gaetano C and Martelli F: Noncoding RNAs in the vascular system response to oxidative stress. Antioxid Redox Signal. 30:992–1010. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sethi S, Sethi S and Bluth MH: Clinical implication of MicroRNAs in molecular pathology: An update for 2018. Clin Lab Med. 38:237–251. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vicentini C, Fassan M, D'Angelo E, Corbo V, Silvestris N, Nuovo GJ and Scarpa A: Clinical application of microRNA testing in neuroendocrine tumors of the gastrointestinal tract. Molecules. 19:2458–2468. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang YT, Xu XH, Yang XD, Hao J, Cao H, Zhu W, Zhang SY and Cao JP: Role of non-coding RNAs in pancreatic cancer: The bane of the microworld. World J Gastroenterol. 20:9405–9417. 2014.PubMed/NCBI | |
Zhang S, Zhu D, Li H, Li H, Feng C and Zhang W: Characterization of circRNA-associated-ceRNA networks in a senescence- accelerated mouse prone 8 brain. Mol Ther. 25:2053–2061. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kishikawa T, Otsuka M, Ohno M, Yoshikawa T, Takata A and Koike K: Circulating RNAs as new biomarkers for detecting pancreatic cancer. World J Gastroenterol. 21:8527–8540. 2015. View Article : Google Scholar : PubMed/NCBI | |
Knupp D and Miura P: CircRNA accumulation: A new hallmark of aging? Mech Ageing Dev. 173:71–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L and Chen LL: Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell. 67:214–227.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vassella E, Chaudhary AK, Mondal G, Kumar V, Kattel K and Mahato RI: Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205. Cancer Lett. 402:1–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yoshida K, Toden S, Ravindranathan P, Han H and Goel A: Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis. 38:1036–1046. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wang P, Wan L, Xu S and Pang D: The emergence of noncoding RNAs as Heracles in autophagy. Autophagy. 13:1004–1024. 2017. View Article : Google Scholar : PubMed/NCBI |