1
|
Laug D, Glasgow SM and Deneen B: A glial
blueprint for gliomagenesis. Nat Rev Neurosci. 19:393–403. 2018.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Amirian ES, Armstrong GN, Zhou R, Lau CC,
Claus EB, Barnholtz-Sloan JS, Il'yasova D, Schildkraut J, Ali-Osman
F, Sadetzki S, et al: The Glioma international case-control study:
A report from the genetic epidemiology of glioma international
consortium. Am J Epidemiol. 183:85–91. 2016.PubMed/NCBI
|
3
|
Benenemissi IH, Sifi K, Sahli LK, Semmam
O, Abadi N and Satta D: Angiotensin-converting enzyme
insertion/deletion gene polymorphisms and the risk of glioma in an
Algerian population. Pan Afr Med J. 32:1972019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hempel JM, Schittenhelm J, Bisdas S,
Brendle C, Bender B, Bier G, Skardelly M, Tabatabai G, Castaneda
Vega S, Ernemann U and Klose U: In vivo assessment of tumor
heterogeneity in WHO 2016 glioma grades using diffusion kurtosis
imaging: Diagnostic performance and improvement of feasibility in
routine clinical practice. J Neuroradiol. 45:32–40. 2018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Cancer Genome Atlas Research Networ, ;
Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA,
Rheinbay E, Miller CR, Vitucci M, et al: Comprehensive, integrative
genomic analysis of diffuse Lower-Grade gliomas. N Engl J Med.
372:2481–2498. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Schmid RS, Simon JM, Vitucci M, McNeill
RS, Bash RE, Werneke AM, Huey L, White KK, Ewend MG, Wu J and
Miller CR: Core pathway mutations induce de-differentiation of
murine astrocytes into glioblastoma stem cells that are sensitive
to radiation but resistant to temozolomide. Neuro Oncol.
18:962–973. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fischer U, Struss AK, Hemmer D, Michel A,
Henn W, Steudel WI and Meese E: PHF3 expression is frequently
reduced in glioma. Cytogenet Cell Genet. 94:131–136. 2001.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Lewis PW, Muller MM, Koletsky MS, Cordero
F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ and Allis
CD: Inhibition of PRC2 activity by a gain-of-function H3 mutation
found in pediatric glioblastoma. Science. 340:857–861. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Schwartzentruber J, Korshunov A, Liu XY,
Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA,
Tönjes M, et al: Driver mutations in histone H3.3 and chromatin
remodelling genes in paediatric glioblastoma. Nature. 482:226–231.
2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ceccon G, Werner JM, Dunkl V, Tscherpel C,
Stoffels G, Brunn A, Deckert M, Fink GR and Galldiks N: Dabrafenib
treatment in a patient with an Epithelioid Glioblastoma and BRAF
V600E Mutation. Int J Mol Sci. 19:E10902018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang Z, Bao Z, Yan W, You G, Wang Y, Li X
and Zhang W: Isocitrate dehydrogenase 1 (IDH1) mutation-specific
microRNA signature predicts favorable prognosis in glioblastoma
patients with IDH1 wild type. J Exp Clin Cancer Res. 32:592013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Srinivasan S, Patric IR and Somasundaram
K: A ten-microRNA expression signature predicts survival in
glioblastoma. PLoS One. 6:e174382011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang W, Zhang L, Wang Z, Yang F, Wang H,
Liang T, Wu F, Lan Q, Wang J and Zhao J: A three-gene signature for
prognosis in patients with MGMT promoter-methylated glioblastoma.
Oncotarget. 7:69991–69999. 2016.PubMed/NCBI
|
14
|
Karsy M, Guan J, Cohen AL, Jensen RL and
Colman H: New molecular considerations for glioma: IDH, ATRX, BRAF,
TERT, H3 K27M. Curr Neurol Neurosci Rep. 17:192017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Solanki C, Sadana D, Arimappamagan A, Rao
KV, Rajeswaran J, Subbakrishna DK, Santosh V and Pandey P:
Impairments in quality of life and cognitive functions in long-term
survivors of glioblastoma. J Neurosci Rural Pract. 8:228–235. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Arimappamagan A, Somasundaram K,
Thennarasu K, Peddagangannagari S, Srinivasan H, Shailaja BC,
Samuel C, Patric IR, Shukla S, Thota B, et al: A fourteen gene GBM
prognostic signature identifies association of immune response
pathway and mesenchymal subtype with high risk group. PLoS One.
8:e620422013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vastrad B, Vastrad C, Godavarthi A and
Chandrashekar R: Molecular mechanisms underlying gliomas and
glioblastoma pathogenesis revealed by bioinformatics analysis of
microarray data. Med Oncol. 34:1822017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhong S, Wu B, Dong X, Han Y, Jiang S,
Zhang Y, Bai Y, Luo SX, Chen Y, Zhang H and Zhao G: Identification
of driver genes and key pathways of glioblastoma shows JNJ-7706621
as a novel antiglioblastoma drug. World Neurosurg. 109:e329–e342.
2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Aldape K, Zadeh G, Mansouri S,
Reifenberger G and von Deimling A: Glioblastoma: Pathology,
molecular mechanisms and markers. Acta Neuropathol. 129:829–848.
2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Poon CC, Sarkar S, Yong VW and Kelly JJP:
Glioblastoma-associated microglia and macrophages: Targets for
therapies to improve prognosis. Brain. 140:1548–1560. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim SM, Kwon IJ, Myoung H, Lee JH and Lee
SK: Identification of human papillomavirus (HPV) subtype in oral
cancer patients through microarray technology. Eur Arch
Otorhinolaryngol. 275:535–543. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cheng Y, Ping J and Chen J: Identification
of potential gene network associated with HCV-Related
hepatocellular carcinoma using microarray analysis. Pathol Oncol
Res. 24:507–514. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Edgar R, Domrachev M and Lash AE: Gene
expression omnibus: NCBI gene expression and hybridization array
data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur
V, Stevanovic S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V,
van der Burg SH, et al: Actively personalized vaccination trial for
newly diagnosed glioblastoma. Nature. 565:240–245. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bady P, Diserens AC, Castella V, Kalt S,
Heinimann K, Hamou MF, Delorenzi M and Hegi ME: DNA fingerprinting
of glioma cell lines and considerations on similarity measurements.
Neuro Oncol. 14:701–711. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets-update. Nucleic Acids Res 41 (Database Issue).
D991–D995. 2013.
|
27
|
Solari A and Goeman JJ: Minimally adaptive
BH: A tiny but uniform improvement of the procedure of Benjamini
and Hochberg. Biom J. 59:776–780. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Huang DW, Sherman BT, Tan Q, Collins JR,
Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki
RA: The DAVID gene functional classification tool: A novel
biological module-centric algorithm to functionally analyze large
gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kanehisa M: The KEGG database. Novartis
Found Symp. 247:91–103, 119-128, 244–252. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Szklarczyk D, Franceschini A, Wyder S,
Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos
A, Tsafou KP, et al: STRING v10: Protein-protein interaction
networks, integrated over the tree of life. Nucleic Acids Res.
43:D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Smoot ME, Ono K, Ruscheinski J, Wang PL
and Ideker T: Cytoscape 2.8: New features for data integration and
network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bader GD and Hogue CW: An automated method
for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Maere S, Heymans K and Kuiper M: BiNGO: A
Cytoscape plugin to assess overrepresentation of gene ontology
categories in biological networks. Bioinformatics. 21:3448–3449.
2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bian EB, Li J, Xie YS, Zong G, Li J and
Zhao B: LncRNAs: New players in gliomas, with special emphasis on
the interaction of lncRNAs With EZH2. J Cell Physiol. 230:496–503.
2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ostrom QT, Bauchet L, Davis FG, Deltour I,
Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh
KM, et al: The epidemiology of glioma in adults: A ‘state of the
science’ review. Neuro Oncol. 16:896–913. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Perry JR, Laperriere N, O'Callaghan CJ,
Brandes AA, Menten J, Phillips C, Fay M, Nishikawa R, Cairncross
JG, Roa W, et al: Short-course radiation plus Temozolomide in
elderly patients with Glioblastoma. N Engl J Med. 376:1027–1037.
2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Peñaranda Fajardo NM, Meijer C and Kruyt
FA: The endoplasmic reticulum stress/unfolded protein response in
gliomagenesis, tumor progression and as a therapeutic target in
glioblastoma. Biochem Pharmacol. 118:1–8. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sacristan MP, Ovejero S and Bueno A: Human
Cdc14A becomes a cell cycle gene in controlling Cdk1 activity at
the G2/M transition. Cell Cycle. 10:387–391. 2011.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Glousker G, Touzot F, Revy P, Tzfati Y and
Savage SA: Unraveling the pathogenesis of Hoyeraal-Hreidarsson
syndrome, a complex telomere biology disorder. Br J Haematol.
170:457–471. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Rooj AK, Mineo M and Godlewski J: MicroRNA
and extracellular vesicles in glioblastoma: Small but powerful.
Brain Tumor Pathol. 33:77–88. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Liau BB, Sievers C, Donohue LK, Gillespie
SM, Flavahan WA, Miller TE, Venteicher AS, Hebert CH, Carey CD,
Rodig SJ, et al: Adaptive chromatin remodeling drives glioblastoma
stem cell plasticity and drug tolerance. Cell Stem Cell.
20:233–246.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yamashita T, Nishimura K, Saiki R,
Okudaira H, Tome M, Higashi K, Nakamura M, Terui Y, Fujiwara K,
Kashiwagi K and Igarashi K: Role of polyamines at the G1/S boundary
and G2/M phase of the cell cycle. Int J Biochem Cell Biol.
45:1042–1050. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Castedo M, Perfettini JL, Roumier T,
Yakushijin K, Horne D, Medema R and Kroemer G: The cell cycle
checkpoint kinase Chk2 is a negative regulator of mitotic
catastrophe. Oncogene. 23:4353–4361. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wada S, Yue L and Furuta I: Prognostic
significance of p34cdc2 expression in tongue squamous cell
carcinoma. Oral Oncol. 40:164–169. 2004. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang R, Loganathan S, Humphreys I and
Srivastava SK: Benzyl isothiocyanate-induced DNA damage causes G2/M
cell cycle arrest and apoptosis in human pancreatic cancer cells. J
Nutr. 136:2728–2734. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Soria JC, Jang SJ, Khuri FR, Hassan K, Liu
D, Hong WK and Mao L: Overexpression of cyclin B1 in early-stage
non-small cell lung cancer and its clinical implication. Cancer
Res. 60:4000–4004. 2000.PubMed/NCBI
|
49
|
Girke P and Seufert W: Compositional
reorganization of the nucleolus in budding yeast mitosis. Mol Biol
Cell. 30:591–606. 2019. View Article : Google Scholar : PubMed/NCBI
|
50
|
Guerrero PA, Tchaicha JH, Chen Z, Morales
JE, McCarty N, Wang Q, Sulman EP, Fuller G, Lang FF, Rao G and
McCarty JH: Glioblastoma stem cells exploit the αvβ8 integrin-TGFβ1
signaling axis to drive tumor initiation and progression. Oncogene.
36:6568–6580. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Shing JC, Choi JW, Chapman R, Schroeder
MA, Sarkaria JN, Fauq A and Bram RJ: A novel synthetic 1,3-phenyl
bis-thiourea compound targets microtubule polymerization to cause
cancer cell death. Cancer Biol Ther. 15:895–905. 2014. View Article : Google Scholar : PubMed/NCBI
|
52
|
Nagarajan P, Curry JL, Ning J, Piao J,
Torres-Cabala CA, Aung PP, Ivan D, Ross MI, Levenback CF, Frumovitz
M, et al: Tumor thickness and mitotic rate robustly predict
melanoma-specific survival in patients with primary vulvar
melanoma: A retrospective review of 100 cases. Clin Cancer Res.
23:2093–2104. 2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Jun DY, Lee JY, Park HS, Lee YH and Kim
YH: Tumor suppressor protein p53-mediated repression of human
mitotic centromere-associated kinesin gene expression is exerted
via down-regulation of Sp1 level. PLoS One. 12:e01896982017.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Pinto M, Vieira J, Ribeiro FR, Soares MJ,
Henrique R, Oliveira J, Jerónimo C and Teixeira MR: Overexpression
of the mitotic checkpoint genes BUB1 and BUBR1 is associated with
genomic complexity in clear cell kidney carcinomas. Cell Oncol.
30:389–395. 2008.PubMed/NCBI
|
55
|
Myrie KA, Percy MJ, Azim JN, Neeley CK and
Petty EM: Mutation and expression analysis of human BUB1 and BUB1B
in aneuploid breast cancer cell lines. Cancer Lett. 152:193–199.
2000. View Article : Google Scholar : PubMed/NCBI
|
56
|
Scintu M, Vitale R, Prencipe M, Gallo AP,
Bonghi L, Valori VM, Maiello E, Rinaldi M, Signori E, Rabitti C, et
al: Genomic instability and increased expression of BUB1B and
MAD2L1 genes in ductal breast carcinoma. Cancer Lett. 254:298–307.
2007. View Article : Google Scholar : PubMed/NCBI
|
57
|
Herman JA, Toledo CM, Olson JM, DeLuca JG
and Paddison PJ: Molecular pathways: Regulation and targeting of
kinetochore-microtubule attachment in cancer. Clin Cancer Res.
21:233–239. 2015. View Article : Google Scholar : PubMed/NCBI
|
58
|
DeLuca JG, Dong Y, Hergert P, Strauss J,
Hickey JM, Salmon ED and McEwen BF: Hec1 and nuf2 are core
components of the kinetochore outer plate essential for organizing
microtubule attachment sites. Mol Biol Cell. 16:519–531. 2005.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Iemura K and Tanaka K: Chromokinesin Kid
and kinetochore kinesin CENP-E differentially support chromosome
congression without end-on attachment to microtubules. Nat Commun.
6:64472015. View Article : Google Scholar : PubMed/NCBI
|
60
|
Shrestha RL and Draviam VM: Lateral to
end-on conversion of chromosome-microtubule attachment requires
kinesins CENP-E and MCAK. Curr Biol. 23:1514–1526. 2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Diaz-Rodriguez E, Sotillo R, Schvartzman
JM and Benezra R: Hec1 overexpression hyperactivates the mitotic
checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci
USA. 105:16719–16724. 2008. View Article : Google Scholar : PubMed/NCBI
|
62
|
Sotillo R, Hernando E, Diaz-Rodriguez E,
Teruya-Feldstein J, Cordón-Cardo C, Lowe SW and Benezra R: Mad2
overexpression promotes aneuploidy and tumorigenesis in mice.
Cancer Cell. 11:9–23. 2007. View Article : Google Scholar : PubMed/NCBI
|