
A predicted risk score based on the expression of 16 autophagy‑related genes for multiple myeloma survival
- Authors:
- Fang‑Xiao Zhu
- Xiao‑Tao Wang
- Hui‑Qiong Zeng
- Zhi‑Hua Yin
- Zhi‑Zhong Ye
-
Affiliations: Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China, Department of Hematology, The Second Affiliated Hospital of Guilin Medical College, Guilin, Guangxi 541001, P.R. China - Published online on: September 19, 2019 https://doi.org/10.3892/ol.2019.10881
- Pages: 5310-5324
-
Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Boga JA, Caballero B, Potes Y, Perez-Martinez Z, Reiter RJ, Vega-Naredo I and Coto-Montes A: Therapeutic potential of melatonin related to its role as an autophagy regulator: A review. J Pineal Res. 66:e125342018. View Article : Google Scholar : PubMed/NCBI | |
Guillaume JD, Celano SL, Martin KR and MacKeigan JP: Determining the impact of metabolic nutrients on autophagy. Methods Mol Biol. 1862:151–162. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liang ZG, Lin GX, Yu BB, Su F, Li L, Qu S and Zhu XD: The role of autophagy in the radiosensitivity of the radioresistant human nasopharyngeal carcinoma cell line CNE-2R. Cancer Manag Res. 10:4125–4134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Onda K, Sugiyama K, Yuan B, Tanaka S, Takagi N and Hirano T: Antitumor effects of arsenic disulfide on the viability, migratory ability, apoptosis and autophagy of breast cancer cells. Oncol Rep. 41:27–42. 2019.PubMed/NCBI | |
Jiao YN, Wu LN, Xue D, Liu XJ, Tian ZH, Jiang ST, Han SY and Li PP: Marsdenia tenacissima extract induces apoptosis and suppresses autophagy through ERK activation in lung cancer cells. Cancer Cell Int. 18:1492018. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Liu H and Ming L: Multiple roles of autophagy in the sorafenib resistance of hepatocellular carcinoma. Cell Physiol Biochem. 44:716–727. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu JS, Li L, Wang SS, Pang X, Wu JB, Sheng SR, Tang YJ, Tang YL, Zheng M and Liang XH: Autophagy is positively associated with the accumulation of myeloid-derived suppressor cells in 4-nitroquinoline-1-oxide-induced oral cancer. Oncol Rep. 40:3381–3391. 2018.PubMed/NCBI | |
Wu Y, Liu X, Qin Z, Hu L and Wang X: Low-frequency ultrasound enhances chemotherapy sensitivity and induces autophagy in PTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediated PI3K/Akt/mTOR signaling pathway. Onco Targets Ther. 11:5621–5630. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Zhao B, Xiong P, Wang C, Zhang J, Tian X and Huang Y: Curcumin induces autophagy via inhibition of yes-associated protein (YAP) in human colon cancer cells. Med Sci Monit. 24:7035–7042. 2018. View Article : Google Scholar : PubMed/NCBI | |
Duan X, Chen B, Cui Y, Zhou L, Wu C, Yang Z, Wen Y, Miao X, Li Q, Xiong L and He J: Ready player one? Autophagy shapes resistance to photodynamic therapy in cancers. Apoptosis. 23:587–606. 2018. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Fan S, Qin T, Yang J, Sun Y, Lu Y, Mao J and Li L: Role of autophagy in breast cancer and breast cancer stem cells (Review). Int J Oncol. 52:1057–1070. 2018.PubMed/NCBI | |
Ianniciello A, Rattigan KM and Helgason GV: The Ins and outs of autophagy and metabolism in hematopoietic and leukemic stem cells: Food for thought. Front Cell Dev Biol. 6:1202018. View Article : Google Scholar : PubMed/NCBI | |
Jacomin AC, Taillebourg E and Fauvarque MO: Deubiquitinating enzymes related to autophagy: New therapeutic opportunities? Cells. 7(pii): E1122018. View Article : Google Scholar : PubMed/NCBI | |
Jin S, Wei J, You L, Liu H and Qian W: Autophagy regulation and its dual role in blood cancers: A novel target for therapeutic development (Review). Oncol Rep. 39:2473–2481. 2018.PubMed/NCBI | |
Feldmann A, Bekbulat F, Huesmann H, Ulbrich S, Tatzelt J, Behl C and Kern A: The RAB GTPase RAB18 modulates macroautophagy and proteostasis. Biochem Biophys Res Commun. 486:738–743. 2017. View Article : Google Scholar : PubMed/NCBI | |
Han Q, Deng Y, Chen S, Chen R, Yang M, Zhang Z, Sun X, Wang W, He Y, Wang F, et al: Downregulation of ATG5-dependent macroautophagy by chaperone-mediated autophagy promotes breast cancer cell metastasis. Sci Rep. 7:47592017. View Article : Google Scholar : PubMed/NCBI | |
Pajares M, Jimenez-Moreno N, Garcia-Yague AJ, Escoll M, de Ceballos ML, Van Leuven F, Rábano A, Yamamoto M, Rojo AI and Cuadrado A: Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 12:1902–1916. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Wang H, Zhang D, Luo W, Liu R, Xu D, Diao L, Liao L and Liu Z: Phosphorylation of ULK1 affects autophagosome fusion and links chaperone-mediated autophagy to macroautophagy. Nat Commun. 9:34922018. View Article : Google Scholar : PubMed/NCBI | |
Bednarczyk M, Muc-Wierzgon M, Waniczek D, Fatyga E, Klakla K, Mazurek U and Wierzgoń J: Autophagy-related gene expression in colorectal cancer patients. J Biol Regul Homeost Agents. 31:923–927. 2017.PubMed/NCBI | |
Cao QH, Liu F, Yang ZL, Fu XH, Yang ZH, Liu Q, Wang L, Wan XB and Fan XJ: Prognostic value of autophagy related proteins ULK1, Beclin 1, ATG3, ATG5, ATG7, ATG9, ATG10, ATG12, LC3B and p62/SQSTM1 in gastric cancer. Am J Transl Res. 8:3831–3847. 2016.PubMed/NCBI | |
Chen D, Chen J, Guo Y and Li Y: Cinobufacini promotes apoptosis of bladder cancer cells by influencing the expression of autophagy-related genes. Oncol Lett. 15:7104–7110. 2018.PubMed/NCBI | |
Li WL, Xiong LX, Shi XY, Xiao L, Qi GY and Meng C: IKKβ/NFκBp65 activated by interleukin-13 targets the autophagy-related genes LC3B and beclin 1 in fibroblasts co-cultured with breast cancer cells. Exp Ther Med. 11:1259–1264. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin P, He RQ, Dang YW, Wen DY, Ma J, He Y, Chen G and Yang H: An autophagy-related gene expression signature for survival prediction in multiple cohorts of hepatocellular carcinoma patients. Oncotarget. 9:17368–17395. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin P, He Y, Wen DY, Li XJ, Zeng JJ, Mo WJ, Li Q, Peng JB, Wu YQ, Pan DH, et al: Comprehensive analysis of the clinical significance and prospective molecular mechanisms of differentially expressed autophagy-related genes in thyroid cancer. Int J Oncol. 53:603–619. 2018.PubMed/NCBI | |
Ma Y, Zhang Y, Zhao Y, Wang X, Lin Y and Ma A: Expression of autophagy-related genes in cerebrospinal fluid of patients with tuberculous meningitis. Exp Ther Med. 15:4671–4676. 2018.PubMed/NCBI | |
Zheng LQ, Li SY and Li CX: Expression profiling analysis of autophagy-related genes in perineural invasion of cutaneous squamous cell carcinoma. Oncol Lett. 15:4837–4848. 2018.PubMed/NCBI | |
Moussay E, Kaoma T, Baginska J, Muller A, Van Moer K, Nicot N, Nazarov PV, Vallar L, Chouaib S, Berchem G and Janji B: The acquisition of resistance to TNFα in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray. Autophagy. 7:760–770. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Lu X, Wang N, Wang J, Cao Y, Wang T, Zhou X, Jiao Y, Yang L, Wang X, et al: Autophagy-related gene expression is an independent prognostic indicator of glioma. Oncotarget. 8:60987–61000. 2017.PubMed/NCBI | |
Gandolfi S, Prada CP and Richardson PG: How I treat the young patient with multiple myeloma. Blood. 132:1114–1124. 2018. View Article : Google Scholar : PubMed/NCBI | |
Raje NS, Bhatta S and Terpos E: Role of the RANK/RANKL pathway in multiple myeloma. Clin Cancer Res. 25:12–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu B, Ju S, Chu H, Shen X, Zhang Y, Luo X and Cong H: The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma. Oncol Lett. 15:6094–6106. 2018.PubMed/NCBI | |
Lu D, Yang C, Zhang Z, Cong Y and Xiao M: Knockdown of Linc00515 inhibits multiple myeloma autophagy and chemoresistance by upregulating miR-140-5p and downregulating ATG14. Cell Physiol Biochem. 48:2517–2527. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma R, Zhang Y, Wang W, Wu J, Yang Q, Xu W, Jiang S, Han Y, Yu K and Zhang S: Inhibition of autophagy enhances the antitumour activity of tigecycline in multiple myeloma. J Cell Mol Med. 22:5955–5963. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mei H, Xiang Y, Mei H, Fang B, Wang Q, Cao D, Hu Y and Guo T: Pterostilbene inhibits nutrient metabolism and induces apoptosis through AMPK activation in multiple myeloma cells. Int J Mol Med. 42:2676–2688. 2018.PubMed/NCBI | |
Su N, Wang P and Li Y: Role of Wnt/β-catenin pathway in inducing autophagy and apoptosis in multiple myeloma cells. Oncol Lett. 12:4623–4629. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Liu T, Zheng J and Hu J: Clarifying the molecular mechanism associated with carfilzomib resistance in human multiple myeloma using microarray gene expression profile and genetic interaction network. Onco Targets Ther. 10:1327–1334. 2017. View Article : Google Scholar : PubMed/NCBI | |
Desantis V, Saltarella I, Lamanuzzi A, Mariggiò MA, Racanelli V, Vacca A and Frassanito MA: Autophagy: A new mechanism of prosurvival and drug resistance in multiple myeloma. Transl Oncol. 11:1350–1357. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yun Z, Zhichao J, Hao Y, Ou J, Ran Y, Wen D and Qun S: Targeting autophagy in multiple myeloma. Leuk Res. 59:97–104. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, Su Z, Chu TM, Goodsaid FM, Pusztai L, et al: The MicroArray quality control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol. 28:827–838. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ioannidis JPA: The proposal to lower P value thresholds to .005. JAMA. 319:1429–1430. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ostaszewski M, Kieffer E, Danoy G, Schneider R and Bouvry P: Clustering approaches for visual knowledge exploration in molecular interaction networks. BMC Bioinformatics. 19:3082018. View Article : Google Scholar : PubMed/NCBI | |
Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI | |
He RQ, Zhou XG, Yi QY, Deng CW, Gao JM, Chen G and Wang QY: Prognostic signature of alternative splicing events in bladder urothelial carcinoma based on spliceseq data from 317 cases. Cell Physiol Biochem. 48:1355–1368. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Zeng JH, Qin XG, Chen JQ, Luo DZ and Chen G: Distinguishable prognostic signatures of left- and right-sided colon cancer: A study based on sequencing data. Cell Physiol Biochem. 48:475–490. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin P, He RQ, Ma FC, Liang L, He Y, Yang H, Dang YW and Chen G: Systematic analysis of survival-associated alternative splicing signatures in gastrointestinal pan-adenocarcinomas. EBioMedicine. 34:46–60. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin P, Wen DY, Li Q, He Y, Yang H and Chen G: Genome-wide analysis of prognostic lncRNAs, miRNAs, and mRNAs forming a competing endogenous RNA network in hepatocellular carcinoma. Cell Physiol Biochem. 48:1953–1967. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Lin P, Wu HY, Li HY, He Y, Dang YW and Chen G: Genomic analysis of small nucleolar RNAs identifies distinct molecular and prognostic signature in hepatocellular carcinoma. Oncol Rep. 40:3346–3358. 2018.PubMed/NCBI | |
Zhang R, Lin P, Yang X, He RQ, Wu HY, Dang YW, Gu YY, Peng ZG, Feng ZB and Chen G: Survival associated alternative splicing events in diffuse large B-cell lymphoma. Am J Transl Res. 10:2636–2647. 2018.PubMed/NCBI | |
Lu X, Sun W, Tang Y, Zhu L, Li Y, Ou C, Yang C, Su J, Luo C, Hu Y and Cao J: Identification of key genes in hepatocellular carcinoma and validation of the candidate gene, cdc25a, using gene set enrichment analysis, meta-analysis and cross-species comparison. Mol Med Rep. 13:1172–1178. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ni Y, Song C, Jin S, Chen Z, Ni M, Han L, Wu J and Jin Y: Gene set enrichment analysis: A genome-wide expression profile-based strategy for discovering functional microRNA-disease relationships. J Int Med Res. 46:596–611. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Vasaikar S, Shi Z, Greer M and Zhang B: WebGestalt 2017: A more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 45:W130–W137. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zyla J, Marczyk M, Weiner J and Polanska J: Ranking metrics in gene set enrichment analysis: Do they matter? BMC Bioinformatics. 18:2562017. View Article : Google Scholar : PubMed/NCBI | |
Han X, Zhong Z, Kou J, Zheng Y, Liu Z, Jiang Y, Zhang Z, Gao Z, Cong L, Tian Y and Yang L: ROS Generated by upconversion nanoparticle-mediated photodynamic therapy induces autophagy via PI3K/AKT/mTOR signaling pathway in M1 peritoneal macrophage. Cell Physiol Biochem. 48:1616–1627. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Huang Q, Wang M, Yan X, Song X, Ma R, Jiang R, Zhao D and Sun L: Compound K inhibits autophagy-mediated apoptosis through activation of the PI3K-Akt signaling pathway thus protecting against Ischemia/reperfusion injury. Cell Physiol Biochem. 47:2589–2601. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Zhao G, Zhang D, An W, Lai H, Li X, Cao S and Lin X: Active fraction of clove induces apoptosis via PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116 cells. Int J Oncol. 53:1363–1373. 2018.PubMed/NCBI | |
Luo X, Ye S, Jiang Q, Gong Y, Yuan Y, Hu X, Su X and Zhu W: Wnt inhibitory factor-1-mediated autophagy inhibits Wnt/β-catenin signaling by downregulating dishevelled-2 expression in non-small cell lung cancer cells. Int J Oncol. 53:904–914. 2018.PubMed/NCBI | |
Wang J, Sun P, Chen Y, Yao H and Wang S: Novel 2-phenyloxypyrimidine derivative induces apoptosis and autophagy via inhibiting PI3K pathway and activating MAPK/ERK signaling in hepatocellular carcinoma cells. Sci Rep. 8:109232018. View Article : Google Scholar : PubMed/NCBI | |
Yin S, Yang S, Pan X, Ma A, Ma J, Pei H, Dong Y, Li S, Li W and Bi X: MicroRNA155 promotes ox-LDL-induced autophagy in human umbilical vein endothelial cells by targeting the PI3K/Akt/mTOR pathway. Mol Med Rep. 18:2798–2806. 2018.PubMed/NCBI | |
Daskalaki I, Gkikas I and Tavernarakis N: Hypoxia and selective autophagy in cancer development and therapy. Front Cell Dev Biol. 6:1042018. View Article : Google Scholar : PubMed/NCBI | |
Du L, Shen T, Liu B, Zhang Y, Zhao C, Jia N, Wang Q and He Q: Shock wave therapy promotes cardiomyocyte autophagy and survival during hypoxia. Cell Physiol Biochem. 42:673–684. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Chen X and Liang Z: MicroRNA-320 regulates autophagy in retinoblastoma by targeting hypoxia inducible factor-1alpha. Exp Ther Med. 14:2367–2372. 2017. View Article : Google Scholar : PubMed/NCBI | |
Niu G, Zhu D, Zhang X, Wang J, Zhao Y and Wang X: Role of hypoxia-inducible factors 1a (HIF1a) in SH-SY5Y cell autophagy induced by oxygen-glucose deprivation. Med Sci Monit. 24:2758–2766. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhang D, Jia S, Huang S, Xiao L, Ma L, Liu G, Gong K and Xu L: Effect of sustained hypoxia on autophagy of genioglossus Muscle-derived stem cells. Med Sci Monit. 24:2218–2224. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Deng M, Liu Z and Wu S: Hypoxia-induced miR-210 promoter demethylation enhances proliferation, autophagy and angiogenesis of schwannoma cells. Oncol Rep. 37:3010–3018. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bosseler M, Marani V, Broukou A, Lequeux A, Kaoma T, Schlesser V, François JH, Palissot V, Berchem GJ, Aouali N and Janji B: Inhibition of HIF1a-dependent upregulation of Phospho-l-Plastin resensitizes multiple myeloma cells to frontline therapy. Int J Mol Sci. 19(pii): E15512018. View Article : Google Scholar : PubMed/NCBI | |
Coudre C, Alani J, Ritchie W, Marsaud V, Sola B and Cahu J: HIF-1a and rapamycin act as gerosuppressant in multiple myeloma cells upon genotoxic stress. Cell Cycle. 15:2174–2182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Filippi I, Saltarella I, Aldinucci C, Carraro F, Ria R, Vacca A and Naldini A: Different adaptive responses to hypoxia in normal and multiple myeloma endothelial cells. Cell Physiol Biochem. 46:203–212. 2018. View Article : Google Scholar : PubMed/NCBI | |
Muz B, Kusdono HD, Azab F, de la Puente P, Federico C, Fiala M, Vij R, Salama NN and Azab AK: Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance. Leuk Lymphoma. 58:2916–2925. 2017. View Article : Google Scholar : PubMed/NCBI | |
Viziteu E, Grandmougin C, Goldschmidt H, Seckinger A, Hose D, Klein B and Moreaux J: Chetomin, targeting HIF-1a/p300 complex, exhibits antitumour activity in multiple myeloma. Br J Cancer. 114:519–523. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Long M, Zhang S, Cheng Z, Zhao X, He F, Liu H and Ming L: Hypoxia inducible factor-1a regulates autophagy via the p27-E2F1 signaling pathway. Mol Med Rep. 16:2107–2112. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wu TT, Jiang L, Rong D and Zhu YQ: Deferoxamine-induced migration and odontoblast differentiation via ROS-dependent autophagy in dental pulp stem cells. Cell Physiol Biochem. 43:2535–2547. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang W and Zhang J: Dexmedetomidine preconditioning protects against lung injury induced by ischemia-reperfusion through inhibition of autophagy. Exp Ther Med. 14:973–980. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu SM, Rao T, Yang X, Ning JZ, Yu WM, Ruan Y, Yuan R, Li CL, Jiang K, Hu W, et al: Autophagy may play an important role in varicocele. Mol Med Rep. 16:5471–5479. 2017. View Article : Google Scholar : PubMed/NCBI | |
Seegmiller AC, Wang HY, Hladik C and Chen W: Uniform expression of Notch1, suppressor of B-cell-specific gene expression, in plasmablastic lymphoma. Arch Pathol Lab Med. 135:770–775. 2011.PubMed/NCBI | |
Pourdehnad M, Truitt ML, Siddiqi IN, Ducker GS, Shokat KM and Ruggero D: Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc Natl Acad Sci USA. 110:11988–11993. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Y, Wang Z, Wang X, Zhu G, Han G, Chen G, Hou C, Wang T, Shen B, et al: Metabotropic glutamate receptor 3 is involved in B-cell-related tumor apoptosis. Int J Oncol. 49:1469–1478. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kinoshita S, Ri M, Kanamori T, Aoki S, Yoshida T, Narita T, Totani H, Ito A, Kusumoto S, Ishida T, et al: Potent antitumor effect of combination therapy with sub-optimal doses of Akt inhibitors and pomalidomide plus dexamethasone in multiple myeloma. Oncol Lett. 15:9450–9456. 2018.PubMed/NCBI | |
Kishino A, Hayashi K, Hidai C, Masuda T, Nomura Y and Oshima T: XBP1-FoxO1 interaction regulates ER stress-induced autophagy in auditory cells. Sci Rep. 7:44422017. View Article : Google Scholar : PubMed/NCBI | |
Miki Y, Tanji K, Mori F, Utsumi J, Sasaki H, Kakita A, Takahashi H and Wakabayashi K: Autophagy mediators (FOXO1, SESN3 and TSC2) in Lewy body disease and aging. Neurosci Lett. 684:35–41. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shen M, Cao Y, Jiang Y, Wei Y and Liu H: Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: Implication of an antioxidation-independent mechanism. Redox Biol. 18:138–157. 2018. View Article : Google Scholar : PubMed/NCBI | |
De Bruyne E, Bos TJ, Schuit F, Van Valckenborgh E, Menu E, Thorrez L, Atadja P, Jernberg-Wiklund H and Vanderkerken K: IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms. Blood. 115:2430–2440. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Uddin S, Zimmerman T, Kang JA, Ulaszek J and Wickrema A: Growth control of multiple myeloma cells through inhibition of glycogen synthase kinase-3. Leuk Lymphoma. 49:1945–1953. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shen JK, Du HP, Ma Q, Yang M, Wang YG and Jin J: 4-Chlorobenzoyl berbamine, a novel berbamine derivative, induces apoptosis in multiple myeloma cells through the IL-6 signal transduction pathway and increases FOXO3a-Bim expression. Oncol Rep. 30:425–432. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu XF, Zhou Q, Hassan R and Pastan I: Panbinostat decreases cFLIP and enhances killing of cancer cells by immunotoxin LMB-100 by stimulating the extrinsic apoptotic pathway. Oncotarget. 8:87307–87316. 2017.PubMed/NCBI |