1
|
Safaee M, Oh MC, Bloch O, Sun MZ, Kaur G,
Auguste KI, Tihan T and Parsa AT: Choroid plexus papillomas:
Advances in molecular biology and understanding of tumorigenesis.
Neuro Oncol. 15:255–267. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ellenbogen RG, Winston KR and Kupsky WJ:
Tumors of the choroid plexus in children. Neurosurgery. 25:327–335.
1989. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rickert CH and Paulus W: Tumors of the
choroid plexus. Microsc Res Tech. 52:104–111. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Louis DN, Perry A, Reifenberger G, von
Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD,
Kleihues P and Ellison DW: The 2016 World Health Organization
Classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jaiswal S, Vij M, Mehrotra A, Kumar B,
Nair A, Jaiswal AK, Behari S and Jain VK: Choroid plexus tumors: A
clinico-pathological and neuro-radiological study of 23 cases.
Asian J Neurosurg. 8:29–35. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lechanoine F, Zemmoura I and Velut S:
Treating cerebrospinal fluid rhinorrhea without dura repair: A case
report of posterior fossa choroid plexus papilloma and review of
the literature. World Neurosurg. 108:990.e1–990.e9. 2017.
View Article : Google Scholar
|
7
|
Wolff JE, Sajedi M, Coppes MJ, Anderson RA
and Egeler RM: Radiation therapy and survival in choroid plexus
carcinoma. Lancet. 353:21261999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Park SH, Won J, Kim SI, Lee Y, Park CK,
Kim SK and Choi SH: Molecular testing of brain tumor. J Pathol
Transl Med. 51:205–223. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Custodio G, Taques GR, Figueiredo BC,
Gugelmin ES, Oliveira Figueiredo MM, Watanabe F, Pontarolo R, Lalli
E and Torres LF: Increased incidence of choroid plexus carcinoma
due to the germline TP53 R337H mutation in southern Brazil. PLoS
One. 6:e180152011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Østrup O, Nysom K, Scheie D, Schmidt AY,
Mathiasen R, Hjalgrim LL, Olsen TE, Skjøth-Rasmussen J, Henriksen
BM, Nielsen FC, et al: Importance of comprehensive molecular
profiling for clinical outcome in children with recurrent cancer.
Front Pediatr. 6:1142018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Merino DM, Shlien A, Villani A, Pienkowska
M, Mack S, Ramaswamy V, Shih D, Tatevossian R, Novokmet A, Choufani
S, et al: Molecular characterization of choroid plexus tumors
reveals novel clinically relevant subgroups. Clin Cancer Res.
21:184–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hasselblatt M, Böhm C, Tatenhorst L, Dinh
V, Newrzella D, Keyvani K, Jeibmann A, Buerger H, Rickert CH and
Paulus W: Identification of novel diagnostic markers for choroid
plexus tumors: A microarray-based approach. Am J Surg Pathol.
30:66–74. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sevenet N, Sheridan E, Amram D, Schneider
P, Handgretinger R and Delattre O: Constitutional mutations of the
hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet.
65:1342–1348. 1999. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Mueller W, Eum JH, Lass U, Paulus W,
Sarkar C, Bruck W and von Deimling A: No evidence of hSNF5/INI1
point mutations in choroid plexus papilloma. Neuropathol Appl
Neurobiol. 30:304–307. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Phelan ML, Sif S, Narlikar GJ and Kingston
RE: Reconstitution of a core chromatin remodeling complex from
SWI/SNF subunits. Mol Cell. 3:247–253. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Reisman D, Glaros S and Thompson EA: The
SWI/SNF complex and cancer. Oncogene. 28:1653–1668. 2009.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kreiger PA, Judkins AR, Russo PA, Biegel
JA, Lestini BJ, Assanasen C and Pawel BR: Loss of INI1 expression
defines a unique subset of pediatric undifferentiated soft tissue
sarcomas. Mod Pathol. 22:142–150. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
de Jong MM, Nolte IM, Meerman GJ, van der
Graaf WT, Oosterwijk JC, Kleibeuker JH, Schaapveld M and de Vries
EG: Genes other than BRCA1 and BRCA2 involved in breast cancer
susceptibility. J Med Genet. 39:225–242. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Miyagi K, Mukawa J, Kinjo N, Horikawa K,
Mekaru S, Nakasone S, Koga H, Higa Y and Naito M: Astrocytoma
linked to familial ataxia-telangiectasia. Acta Neurochir (Wien).
135:87–92. 1995. View Article : Google Scholar : PubMed/NCBI
|
20
|
Piane M, Molinaro A, Soresina A, Costa S,
Maffeis M, Germani A, Pinelli L, Meschini R, Plebani A, Chessa L
and Micheli R: Novel compound heterozygous mutations in a child
with Ataxia-Telangiectasia showing unrelated cerebellar disorders.
J Neurol Sci. 371:48–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cryan JB, Haidar S, Ramkissoon LA, Bi WL,
Knoff DS, Schultz N, Abedalthagafi M, Brown L, Wen PY, Reardon DA,
et al: Clinical multiplexed exome sequencing distinguishes adult
oligodendroglial neoplasms from astrocytic and mixed lineage
gliomas. Oncotarget. 5:8083–8092. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pécuchet N, Zonta E, Didelot A, Combe P,
Thibault C, Gibault L, Lours C, Rozenholc Y, Taly V, Laurent-Puig
P, et al: Base-position error rate analysis of next-generation
sequencing applied to circulating tumor DNA in non-small cell lung
cancer: A prospective study. PLoS Med. 13:e10021992016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Adzhubei IA, Schmidt S, Peshkin L,
Ramensky VE, Gerasimova A, Bork P, Kondrashov AS and Sunyaev SR: A
method and server for predicting damaging missense mutations. Nat
Methods. 7:248–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Han CM, Hwang Y, Kim CK and Oh JH: Genetic
profile analysis of a patient with metachronous gastric cancer with
a family history of gastrointestinal cancers. Korean J Helicobacter
Upper Gastrointest Res. 17:218–223. 2017. View Article : Google Scholar
|
25
|
Chakrabarty S, Varghese VK, Sahu P,
Jayaram P, Shivakumar BM, Pai CG and Satyamoorthy K: Targeted
sequencing-based analyses of candidate gene variants in ulcerative
colitis-associated colorectal neoplasia. Br J Cancer. 117:136–143.
2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wrede B, Hasselblatt M, Peters O, Thall
PF, Kutluk T, Moghrabi A, Mahajan A, Rutkowski S, Diez B, Wang X,
et al: Atypical choroid plexus papilloma: Clinical experience in
the CPT-SIOP-2000 study. J Neurooncol. 95:383–392. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Adesina AM: Intraoperative consultation in
the diagnosis of pediatric brain tumors. Arch Pathol Lab Med.
129:1653–1660. 2005.PubMed/NCBI
|
28
|
Uff CE, Galloway M and Bradford R:
Metastatic atypical choroid plexus papilloma: A case report. J
Neurooncol. 82:69–74. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Singh A, Vermani S, Sharma S and Chand K:
Papillary meningioma: A rare but distinct variant of malignant
meningioma. Diagn Pathol. 2:32007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jamjoom AA, Sharab MA, Jamjoom AB and
Satti MB: Rapid evolution of a choroid plexus papilloma in an
infant. Br J Neurosurg. 23:324–325. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Japp AS, Gessi M, Messing-Jünger M,
Denkhaus D, Zur Mühlen A, Wolff JE, Hartung S, Kordes U,
Klein-Hitpass L and Pietsch T: High-resolution genomic analysis
does not qualify atypical plexus papilloma as a separate entity
among choroid plexus tumors. J Neuropathol Exp Neurol. 74:110–120.
2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Matsushima T, Inoue T, Takeshita I, Fukui
M, Iwaki T and Kitamoto T: Choroid plexus papillomas: An
immunohistochemical study with particular reference to the
coexpression of prealbumin. Neurosurgery. 23:384–389. 1988.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Sameshima T, Tanikawa R, Sugimura T, Izumi
N, Seki T, Maeda T, Tsuboi T, Hashimoto M, Kimura T and Nabeshima
K: Choroid plexus papilloma originating in the sella turcica-case
report. Neurol Med Chir (Tokyo). 50:144–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Figarella-Branger D, Lepidi H, Poncet C,
Gambarelli D, Bianco N, Rougon G and Pellissier JF: Differential
expression of cell adhesion molecules (CAM). neural CAM and
epithelial cadherin in ependymomas and choroid plexus tumors. Acta
Neuropathol. 89:248–257. 1995. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kim SA, Inamura K, Yamauchi M, Nishihara
R, Mima K, Sukawa Y, Li T, Yasunari M, Morikawa T, Fitzgerald KC,
et al: Loss of CDH1 (E-cadherin) expression is associated with
infiltrative tumour growth and lymph node metastasis. Br J Cancer.
114:199–206. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gumbiner BM: Regulation of
cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol.
6:622–634. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Losi-Guembarovski R, Kuasne H,
Guembarovski AL, Rainho CA and Cólus IM: DNA methylation patterns
of the CDH1. RARB. and SFN genes in choroid plexus tumors. Cancer
Genet Cytogenet. 179:140–145. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hirohashi S and Kanai Y: Cell adhesion
system and human cancer morphogenesis. Cancer Sci. 94:575–581.
2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lv SQ, Song YC, Xu JP, Shu HF, Zhou Z, An
N, Huang QL and Yang H: A novel TP53 somatic mutation involved in
the pathogenesis of pediatric choroid plexus carcinoma. Med Sci
Monit. 18:CS37–CS41. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tabori U, Shlien A, Baskin B, Levitt S,
Ray P, Alon N, Hawkins C, Bouffet E, Pienkowska M, Lafay-Cousin L,
et al: TP53 alterations determine clinical subgroups and survival
of patients with choroid plexus tumors. J Clin Oncol. 28:1995–2001.
2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Vital A, Bringuier PP, Huang H, San Galli
F, Rivel J, Ansoborlo S, Cazauran JM, Taillandier L, Kleihues P and
Ohgaki H: Astrocytomas and choroid plexus tumours in two families
with identical p53 germline mutations. J Neuropathol Exp Neurol.
57:1061–1069. 1998. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bettegowda C, Agrawal N, Jiao Y, Wang Y,
Wood LD, Rodriguez FJ, Hruban RH, Gallia GL, Binder ZA, Riggins CJ,
et al: Exomic sequencing of four rare central nervous system tumor
types. Oncotarget. 4:572–583. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Synhaeve NE, van den Bent MJ, French PJ,
Dinjens WNM, Atmodimedjo PN, Kros JM, Verdijk R, Dirven CMF and
Dubbink HJ: Clinical evaluation of a dedicated next generation
sequencing panel for routine glioma diagnostics. Acta Neuropathol
Commun. 6:1262018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Brastianos PK, Taylor-Weiner A, Manley PE,
Jones RT, Dias-Santagata D, Thorner AR, Lawrence MS, Rodriguez FJ,
Bernardo LA, Schubert L, et al: Exome sequencing identifies BRAF
mutations in papillary craniopharyngiomas. Nat Genet. 46:161–165.
2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Merchant M, Evangelista M, Luoh SM, Frantz
GD, Chalasani S, Carano RA, van Hoy M, Ramirez J, Ogasawara AK,
McFarland LM, et al: Loss of the serine/threonine kinase fused
results in postnatal growth defects and lethality due to
progressive hydrocephalus. Mol Cell Biol. 25:7054–7068. 2005.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Shajani-Yi Z, de Abreu FB, Peterson JD and
Tsongalis GJ: Frequency of somatic TP53 mutations in combination
with known pathogenic mutations in colon adenocarcinoma, non-small
cell lung carcinoma and gliomas as identified by next-generation
sequencing. Neoplasia. 20:256–262. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Parsons DW, Jones S, Zhang X, Lin JC,
Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et
al: An integrated genomic analysis of human glioblastoma
multiforme. Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
The Cancer Genome Atlas Research Network,
. Comprehensive genomic characterization defines human glioblastoma
genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Rath PB, Lal O, Ajala Y, Li Y, Xia S, Kim
J and Laterra J: In vivo c-Met pathway inhibition depletes human
glioma xenografts of tumor-propagating stem-like cells. Transl
Oncol. 6:104–111. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Hasselblatt M, Gesk S, Oyen F, Rossi S,
Viscardi E, Giangaspero F, Giannini C, Judkins AR, Frühwald MC,
Obser T, et al: Nonsense mutation and inactivation of SMARCA4
(BRG1) in an atypical teratoid/rhabdoid tumor showing retained
SMARCB1 (INI1) expression. Am J Surg Pathol. 35:933–935. 2011.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Bakkenist CJ and Kastan MB: DNA damage
activates ATM through intermolecular autophosphorylation and dimer
dissociation. Nature. 421:499–506. 2003. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kozlov SV, Graham ME, Jakob B, Tobias F,
Kijas AW, Tanuji M, Chen P, Robinson PJ, Taucher-Scholz G, Suzuki
K, et al: Autophosphorylation and ATM activation: Additional sites
add to the complexity. J Biol Chem. 286:9107–9119. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hirsch P, Zhang Y, Tang R, Joulin J,
Boutroux H, Pronier E, Moatti H, Flandrin P, Marzac C, Bories D, et
al: Genetic hierarchy and temporal variegation in the clonal
history of acute myeloid leukaemia. Nat Commun. 7:124752016.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Beschorner R, Waidelich J, Trautmann K,
Psaras T and Schittenhelm J: Notch receptors in human choroid
plexus tumors. Histol Histopathol. 28:1055–1063. 2013.PubMed/NCBI
|
55
|
Ricks TK, Chiu HJ, Ison G, Kim G, McKee
AE, Kluetz P and Pazdur R: Successes and challenges of PARP
inhibitors in cancer therapy. Front Oncol. 5:2222015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ray Chaudhuri A and Nussenzweig A: The
multifaceted roles of PARP1 in DNA repair and chromatin
remodelling. Nat Rev Mol Cell Biol. 18:610–621. 2017. View Article : Google Scholar : PubMed/NCBI
|
57
|
Gros-Louis F, Dupré N, Dion P, Fox MA,
Laurent S, Verreault S, Sanes JR, Bouchard JP and Rouleau GA:
Mutations in SYNE1 lead to a newly discovered form of autosomal
recessive cerebellar ataxia. Nat Genet. 39:80–85. 2007. View Article : Google Scholar : PubMed/NCBI
|
58
|
Masica DL and Karchin R: Correlation of
somatic mutation and expression identifies genes important in human
glioblastoma progression and survival. Cancer Res. 71:4550–4561.
2011. View Article : Google Scholar : PubMed/NCBI
|
59
|
Weng AP, Ferrando AA, Lee W, Morris JP IV,
Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT and Aster
JC: Activating mutations of NOTCH1 in human T cell acute
lymphoblastic leukemia. Science. 306:269–271. 2004. View Article : Google Scholar : PubMed/NCBI
|
60
|
Espinoza I and Miele L: Notch inhibitors
for cancer treatment. Pharmacol Ther. 139:95–110. 2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Lee SY, Kumano K, Masuda S, Hangaishi A,
Takita J, Nakazaki K, Kurokawa M, Hayashi Y, Ogawa S and Chiba S:
Mutations of the Notch1 gene in T-cell acute lymphoblastic
leukemia: Analysis in adults and children. Leukemia. 19:1841–1843.
2005. View Article : Google Scholar : PubMed/NCBI
|
62
|
Sheardown S, Norris D, Fisher A and
Brockdorff N: The mouse Smcx gene exhibits developmental and tissue
specific variation in degree of escape from X inactivation. Hum Mol
Genet. 5:1355–1360. 1996. View Article : Google Scholar : PubMed/NCBI
|
63
|
Wlodarski MW, Collin M and Horwitzd MS:
GATA2 deficiency and related myeloid neoplasms. Semin Hematol.
54:81–86. 2017. View Article : Google Scholar : PubMed/NCBI
|
64
|
Rodriguez-Bravo V, Carceles-Cordon M,
Hoshida Y, Cordon-Cardo C, Galsky MD and Domingo-Domenech J: The
role of GATA2 in lethal prostate cancer aggressiveness. Nat Rev
Urol. 14:38–48. 2017. View Article : Google Scholar : PubMed/NCBI
|
65
|
Kastan MB and Lim DS: The many substrates
and functions of ATM. Nat Rev Mol Cell Biol. 1:179–186. 2000.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Blake SM, Stricker SH, Halavach H, Poetsch
AR, Cresswell G, Kelly G, Kanu N, Marino S, Luscombe NM, Pollard SM
and Behrens A: Inactivation of the ATMIN/ATM pathway protects
against glioblastoma formation. Elife. 5:e087112016. View Article : Google Scholar : PubMed/NCBI
|
67
|
Eich M, Roos WP, Nikolova T and Kaina B:
Contribution of ATM and ATR to the resistance of glioblastoma and
malignant melanoma cells to the methylating anticancer drug
temozolomide. Mol Cancer Ther. 12:2529–2540. 2013. View Article : Google Scholar : PubMed/NCBI
|
68
|
Maréchal A and Zou L: DNA damage sensing
by the ATM and ATR kinases. Cold Spring Harb Perspect Biol.
5:a0127162013. View Article : Google Scholar : PubMed/NCBI
|
69
|
Biddlestone-Thorpe L, Sajjad M, Rosenberg
E, Beckta JM, Valerie NC, Tokarz M, Adams BR, Wagner AF, Khalil A,
Gilfor D, et al: ATM kinase inhibition preferentially sensitizes
p53 mutant glioma to ionizing radiation. Clin Cancer Res.
19:3189–3200. 2013. View Article : Google Scholar : PubMed/NCBI
|
70
|
Zou Y, Wang Q, Li B, Xie B and Wang W:
Temozolomide induces autophagy via ATM-AMPK-ULK1 pathways in
glioma. Mol Med Rep. 10:411–416. 2014. View Article : Google Scholar : PubMed/NCBI
|
71
|
Janin N, Andrieu N, Ossian K, Laugé A,
Croquette MF, Griscelli C, Debré M, Bressac-de-Paillerets B, Aurias
A and Stoppa-Lyonnet D: Breast cancer risk in ataxia telangiectasia
(AT) heterozygotes: Haplotype study in French AT families. Br J
Cancer. 80:1042–1045. 1999. View Article : Google Scholar : PubMed/NCBI
|
72
|
Carson AR, Smith EN, Matsui H, Brækkan SK,
Jepsen K, Hansen JB and Frazer KA: Effective filtering strategies
to improve data quality from population-based whole exome
sequencing studies. BMC Bioinformatics. 15:1252014. View Article : Google Scholar : PubMed/NCBI
|
73
|
Khalil HS, Tummala H and Zhelev N: ATM in
focus: A damage sensor and cancer target. Biodiscov. 5:12012.
|
74
|
Lavina MF, Scotta S, Guevena N, Kozlova S,
Penga C and Chena P: Functional consequences of sequence
alterations in the ATM gene. DNA Repair (Amst). 3:1197–1205. 2004.
View Article : Google Scholar : PubMed/NCBI
|