1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Villanueva A: Hepatocellular carcinoma. N
Eng J Med. 380:1450–1462. 2019. View Article : Google Scholar
|
3
|
Dhanasekaran R, Limaye A and Cabrera R:
Hepatocellular carcinoma: Current trends in worldwide epidemiology,
risk factors, diagnosis, and therapeutics. Hepat Med. 4:19–37.
2012.PubMed/NCBI
|
4
|
Thewes V, Simon R, Hlevnjak M, Schlotter
M, Schroeter P, Schmidt K, Wu Y, Anzeneder T, Wang W, Windisch P,
et al: The branched-chain amino acid transaminase 1 sustains growth
of antiestrogen-resistant and ERalpha-negative breast cancer.
Oncogene. 36:4124–4134. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang ZQ, Faddaoui A, Bachvarova M, Plante
M, Gregoire J, Renaud MC, Sebastianelli A, Guillemette C, Gobeil S,
Macdonald E, et al: BCAT1 expression associates with ovarian cancer
progression: Possible implications in altered disease metabolism.
Oncotarget. 6:31522–31543. 2015.PubMed/NCBI
|
6
|
Xu Y, Yu W, Yang T, Zhang M, Liang C, Cai
X and Shao Q: Overexpression of BCAT1 is a prognostic marker in
gastric cancer. Hum Pathol. 75:41–46. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mayers JR, Torrence ME, Danai LV,
Papagiannakopoulos T, Davidson SM, Bauer MR, Lau AN, Ji BW, Dixit
PD, Hosios AM, et al: Tissue of origin dictates branched-chain
amino acid metabolism in mutant Kras-driven cancers. Science.
353:1161–1165. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zheng YH, Hu WJ, Chen BC, Grahn TH, Zhao
YR, Bao HL, Zhu YF and Zhang QY: BCAT1, a key prognostic predictor
of hepatocellular carcinoma, promotes cell proliferation and
induces chemoresistance to cisplatin. Liver Int. 36:1836–1847.
2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu M, Liu Q, Jia Y, Tu K, Yao Y, Liu Q and
Guo C: BCAT1 promotes tumor cell migration and invasion in
hepatocellular carcinoma. Oncol Lett. 12:2648–2656. 2016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Tonjes M, Barbus S, Park YJ, Wang W,
Schlotter M, Lindroth AM, Pleier SV, Bai AHC, Karra D, Piro RM, et
al: BCAT1 promotes cell proliferation through amino acid catabolism
in gliomas carrying wild-type IDH1. Nat Med. 19:901–908. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou W, Feng X, Ren C, Jiang X, Liu W,
Huang W, Liu Z, Li Z, Zeng L, Wang L, et al: Over-expression of
BCAT1, a c-Myc target gene, induces cell proliferation, migration
and invasion in nasopharyngeal carcinoma. Mol Cancer. 12:532013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Raffel S, Falcone M, Kneisel N, Hansson J,
Wang W, Lutz C, Bullinger L, Poschet G, Nonnenmacher Y, Barnert A,
et al: BCAT1 restricts αKG levels in AML stem cells leading to
IDHmut-like DNA hypermethylation. Nature. 551:384–388. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Papathanassiu AE, Ko JH, Imprialou M,
Bagnati M, Srivastava PK, Vu HA, Cucchi D, McAdoo SP, Ananieva EA,
Mauro C and Behmoaras J: BCAT1 controls metabolic reprogramming in
activated human macrophages and is associated with inflammatory
diseases. Nat Commun. 8:160402017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang HG, Xie R, Shen P, Huang XD, Ji GZ
and Yang XZ: BCAT1 expression in hepatocellular carcinoma. Clin Res
Hepatol Gastroenterol. 40:e55–e56. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chandrashekar DS, Bashel B, Balasubramanya
SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and
Varambally S: UALCAN: A portal for facilitating tumor subgroup gene
expression and survival analyses. Neoplasia. 19:649–658. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Warde-Farley D, Donaldson SL, Comes O,
Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT,
et al: The GeneMANIA prediction server: Biological network
integration for gene prioritization and predicting gene function.
Nucleic Acids Res. 38:W214–W220. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vasaikar SV, Straub P, Wang J and Zhang B:
LinkedOmics: Analyzing multi-omics data within and across 32 cancer
types. Nucleic Acids Res. 46:D956–D963. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang J, Vasaikar S, Shi Z, Zhang B and
Greer M: WebGestalt 2017: A more comprehensive, powerful, flexible
and interactive gene set enrichment analysis toolkit. Nucleic Acids
Res. 45:W130–W137. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lian Q, Wang S, Zhang G, Wang D, Luo G,
Tang J, Chen L and Gu J: HCCDB: A database of hepatocellular
carcinoma expression atlas. Genomics Proteomics Bioinformatics.
16:269–275. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tung EK, Mak CK, Fatima S, Lo RC, Zhang C,
Dai H, Poon RT, Yuen MF, Lai CL, Li JJ, et al: Clinicopathological
and prognostic significance of serum and tissue Dickkopf-1 levels
in human hepatocellular carcinoma. Liver Int. 31:1494–1504. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Lamb JR, Zhang C, Xie T, Wang K, Zhang B,
Hao K, Chudin E, Fraser HB, Millstein J, Ferguson M, et al:
Predictive genes in adjacent normal tissue are preferentially
altered by sCNV during tumorigenesis in liver cancer and may rate
limiting. PloS One. 6:e200902011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sung WK, Zheng H, Li S, Chen R, Liu X, Li
Y, Lee NP, Ariyaratne PN, Tennakoon C, Mulawadi FH, et al:
Genome-wide survey of recurrent HBV integration in hepatocellular
carcinoma. Nat Genet. 44:765–769. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wong KF, Liu AM, Hong W, Xu Z and Luk JM:
Integrin α2β1 inhibits MST1 kinase phosphorylation and activates
Yes-associated protein oncogenic signaling in hepatocellular
carcinoma. Oncotarget. 7:77683–77695. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu AM, Yao TJ, Wang W, Wong KF, Lee NP,
Fan ST, Poon RT, Gao C and Luk JM: Circulating miR-15b and miR-130b
in serum as potential markers for detecting hepatocellular
carcinoma: a retrospective cohort study. BMJ Open. 2:e0008252012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Burchard J, Zhang C, Liu AM, Poon RT, Lee
NP, Wong KF, Sham PC, Lam BY, Ferguson MD, Tokiwa G, et al:
microRNA-122 as a regulator of mitochondrial metabolic gene network
in hepatocellular carcinoma. Mol Sys Biol. 6:4022010. View Article : Google Scholar
|
26
|
Lim HY, Sohn I, Deng S, Lee J, Jung SH,
Mao M, Wang K, Shi S, Joh JW, et al: Prediction of disease-free
survival in hepatocellular carcinoma by gene expression profiling.
Ann Surg Oncol. 20:3747–3753. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Roessler S, Jia HL, Budhu A, Forgues M, Ye
QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX and Wang XW: A
unique metastasis gene signature enables prediction of tumor
relapse in early-stage hepatocellular carcinoma patients. Cancer
Res. 70:10202–10212. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Roessler S, Long EL, Budhu A, Chen Y, Zhao
X, Ji J, Walker R, Jia HL, Ye QH, Qin LX, et al: Integrative
genomic identification of genes on 8p associated with
hepatocellular carcinoma progression and patient survival.
Gastroenterology. 142:957–966.e912. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhao X, Parpart S, Takai A, Roessler S,
Budhu A, Yu Z, Blank M, Zhang YE, Jia HL, Ye QH, et al: Integrative
genomics identifies YY1AP1 as an oncogenic driver in EpCAM(+)
AFP(+) hepatocellular carcinoma. Oncogene. 34:5095–5104. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang Y, Gao B, Tan PY, Handoko YA, Sekar
K, Deovasogamani A, Seshachalam VP, OuYang HY, Shi M, Xie C, et al:
Genome-wide CRISPR knockout screens identify NCAPG as an essential
oncogene for hepatocellular carcinoma tumor growth. FASEB J.
33:8759–8770. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hoshida Y, Villanueva A, Kobayashi M, Peix
J, Chaing DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J, et
al: Gene expression in fixed tissues and outcome in hepatocellular
carcinoma. N Engl J Med. 359:1995–2004. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chiang DY, Villanueva A, Hoshida Y, Peix
J, Newell P, Minguez B, LeBlanc AC, Donovan DJ, Thung SN, Solé M,
et al: Focal gains of VEGFA and molecular classification of
hepatocellular carcinoma. Cancer Res. 68:6779–6788. 2008.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Villanueva A, Hoshida Y, Battiston C,
Tovar V, Sia D, Alsinet C, Cornella H, Liberzon A, Kobayashu M,
Kumada H, et al: Combining clinical, pathology, and gene expression
data to predict recurrence of hepatocellular carcinoma.
Gastroenterology. 140:1501–1512.e1502. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Toffanin S, Hoshida Y, Lachenmayer A,
Villanueva A, Cabellos L, Minguez B, Savic R, Ward SC, Thung S,
Chiang DY, et al: MicroRNA-based classification of hepatocellular
carcinoma and oncogenic role of miR-517a. Gastroenterology.
140:1618–1628.e1616. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kishikawa T, Otsuka M, Tan PS, Ohno M, Sun
X, Yoshikawa T, Shibata C, Takata A, Kojima K, Takehana K, et al:
Decreased miR122 in hepatocellular carcinoma leads to
chemoresistance with increased arginine. Oncotarget. 6:8339–8352.
2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kojima K, April C, Canasto-Chibuque C,
Chen X, Deshmukh M, Venkatesh A, Tan PS, Kobayashi M, Kumada H, Fan
JB and Hoshida Y: Transcriptome profiling of archived sectioned
formalin-fixed paraffin-embedded (AS-FFPE) tissue for disease
classification. PloS One. 9:e869612014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Villa E, Critelli R, Lei B, Marzocchi G,
Cammà C, Giannelli G, Cabibbo G, Enea M, Colopi S, Caporali C, et
al: Neoangiogenesis-related genes are hallmarks of fast-growing
hepatocellular carcinomas and worst survival. Results from a
prospective study. Gut. 65:861–869. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zubiete-Franco I, Garcia-Rodriguez JL,
Lopitz-Otsoa F, Serrano Macia M, Simon J, Fernàndez-Tussy P,
Barbier-Torres L, Fernàndez-Ramos D, Gutiérrez-de-Juan V, López de
Davalillo S, et al: SUMOylation regulates LKB1 localization and its
oncogenic activity in liver cancer. EBioMedicine. 40:406–421. 2019.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Villanueva A, Portela A, Sayols S,
Battiston C, Hoshida Y, Méndez-González J, Imbaud S, Letouzé E,
Hernandez-Gea V, Corenlla H, et al HEPTROMIC Consortium, : DNA
methylation-based prognosis and epidrivers in hepatocellular
carcinoma. Hepatology. 61:1945–1956. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dong B, Lee JS, Park YY, Yang F, Xu G,
Huang W, Finegold J and Moore DD: Activating CAR and β-catenin
induces uncontrolled liver growth and tumorigenesis. Nat Commun.
6:59442015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Makowska Z, Boldanova T, Adametz D,
Quagliata L, Vogt JE, Dill MT, Matter MS, Roth V, Terracciano L and
Heim MH: Gene expression analysis of biopsy samples reveals
critical limitations of transcriptome-based molecular
classifications of hepatocellular carcinoma. J Pathol Clin Res.
2:80–92. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Grinchuk OV, Yenamandra SP, Iyer R, Singh
M, Lee HK, Lim KH, Chow PK and Kuznetsov VA: Tumor-adjacent tissue
co-expression profile analysis reveals pro-oncogenic ribosomal gene
signature for prognosis of resectable hepatocellular carcinoma. Mol
Oncol. 12:89–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Liao MJ, Yang XM, Yao RZ and Shi N: BCAT1
overexpression associates with clinical progression and poor
prognosis in patients with hepatocellular carcinoma. Int J Clin Exp
Med. 12:4202–4209. 2019.
|
44
|
Lyssiotis CA and Kimmelman AC: Metabolic
interactions in the tumor microenvironment. Trends Cell Biol.
27:863–875. 2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Reina-Campos M, Moscat J and Diaz-Meco M:
Metabolism shapes the tumor microenvironment. Curr Opin Cell Biol.
48:47–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ananieva EA and Wilkinson AC:
Branched-chain amino acid metabolism in cancer. Curr Opin Clin Nutr
Metab Care. 21:64–70. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Dey P, Baddour J, Muller F, Wu CC, Wang H,
Liao WT, Lan Z, Chen A, Gutschner T, Kang Y, et al: Genomic
deletion of malic enzyme 2 confers collateral lethality in
pancreatic cancer. Nature. 542:119–123. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Symonds EL, Pedersen SK, Baker RT, Murray
DH, Gaur S, Cole SR, Gopalsamy G, Mangira D, LaPointe LC and Young
GP: A blood test for methylated BCAT1 and IKZF1 vs. a fecal
immunochemical test for detection of colorectal neoplasia. Clin
Transl Gastroenterol. 7:e1372016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Li Q, Pan X, Zhu D, Deng Z, Jiang R and
Wang X: Circular RNA MAT2B promotes glycolysis and malignancy of
hepatocellular carcinoma via the miR-338-3p/PKM2 axis under hypoxic
stress. Hepatology. Apr 20–2019.(Epub ahead of print).
|
50
|
Itzel T, Spang R, Maass T, Munker S,
Roessler S, Ebert MP, Schlitt HJ, Herr W, Evert M and Teufel A:
Random gene sets in predicting survival of patients with
hepatocellular carcinoma. J Mol Med (Berl). 97:2019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yu H, Wang H, Xu HR, Zhang YC, Yu XB, Wu
MC, Jin GZ and Cong WM: Overexpression of MTHFD1 in hepatocellular
carcinoma predicts poorer survival and recurrence. Future Oncol.
15:1771–1780. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Jiang H, Zhang X, Tao Y, Shan L, Jiang Q,
Yu Y, Cai F and Ma L: Prognostic and clinicopathologic significance
of SIRT1 expression in hepatocellular carcinoma. Oncotarget.
8:52357–52365. 2016.PubMed/NCBI
|
53
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhang L and Han J: Branched-chain amino
acid transaminase 1 (BCAT1) promotes the growth of breast cancer
cells through improving mTOR-mediated mitochondrial biogenesis and
function. Biochem Biophys Res Commun. 486:224–231. 2017. View Article : Google Scholar : PubMed/NCBI
|
55
|
Eden A and Benvenisty N: Involvement of
branched-chain amino acid aminotransferase (Bcat1/Eca39) in
apoptosis. FEBS Lett. 457:255–261. 1999. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ji D, Jiang C, Zhang L, Liang N, Jiang T,
Yang B and Liang H: LncRNA CRNDE promotes hepatocellular carcinoma
cell proliferation, invasion, and migration through regulating
miR-203/BCAT1 axis. J Cell Physiol. 234:6548–6560. 2019. View Article : Google Scholar : PubMed/NCBI
|
57
|
Qi LN, Xiang BD, Wu FX, Ye JZ, Zhong JH,
Wang YY, Chen YY, Chen ZS, Ma L, Chen J, et al: Circulating tumor
cells undergoing EMT provide a metric for diagnosis and prognosis
of patients with hepatocellular carcinoma. Cancer Res.
78:4731–4744. 2018. View Article : Google Scholar : PubMed/NCBI
|
58
|
Cho HR, Jeon H, Park CK, Park SH, Kang KM
and Choi SH: BCAT1 is a new MR imaging-related biomarker for
prognosis prediction in IDH1-wildtype glioblastoma patients. Sci
Rep. 7:177402017. View Article : Google Scholar : PubMed/NCBI
|
59
|
Li H, Ye D, Xie W, Hua F, Yang Y, Wu J, Gu
A, Ren Y and Mao K: Defect of branched-chain amino acid metabolism
promotes the development of Alzheimer's disease by targeting the
mTOR signaling. Biosci Rep. 38(pii): BSR201801272018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Jour G, Vasudevaraja V, Prieto VG, Snuderl
M, Torres-Cabala CA, Al-Rohil R, Sulman EP, Ballester LY and Aung
PP: BCAT1 and miR-2504: Novel methylome signature distinguishes
spindle/desmoplastic melanoma from superficial malignant peripheral
nerve sheath tumor. Mod Pathol. 32:338–345. 2019. View Article : Google Scholar : PubMed/NCBI
|
61
|
Honda M, Takehana K, Sakai A, Tagata Y,
Shirasaki T, Nishitani S, Muramatsu T, Yamashita T, Nakamoto Y,
Mizukoshi E, et al: Malnutrition impairs interferon signaling
through mTOR and FoxO pathways in patients with chronic hepatitis
C. Gastroenterology. 141:128–140. 2011. View Article : Google Scholar : PubMed/NCBI
|
62
|
Chu Y, Li D and Zhang H, Ding J, Xu P, Qiu
X and Zhang H: PIG3 suppresses gastric cancer proliferation by
regulating p53-mediated apoptosis. J Biol Regul Homeost Agents.
32:1185–1189. 2018.PubMed/NCBI
|
63
|
Moua P, Checketts M, Xu LG, Shu HB,
Reyland ME and Cusick JK: RELT family members activate p38 and
induce apoptosis by a mechanism distinct from TNFR1. Biochem
Biophys Res Commun. 491:25–32. 2017. View Article : Google Scholar : PubMed/NCBI
|
64
|
Choi BK, Kim SH, Kim YH, Lee DG, Oh HS,
Han C, Kim YI, Jeon Y, Lee H and Kwon BS: RELT negatively regulates
the early phase of the T-cell response in mice. Eur J Immunol.
48:1739–1749. 2018. View Article : Google Scholar : PubMed/NCBI
|
65
|
Go Y, Jeong JY, Jeoung NH, Jeon JH, Park
BY, Kang HJ, Ha CM, Choi YK, Lee SJ, Ham HJ, et al: Inhibition of
pyruvate dehydrogenase kinase 2 protects against hepatic steatosis
through modulation of tricarboxylic acid cycle anaplerosis and
ketogenesis. Diabetes. 65:2876–2887. 2016. View Article : Google Scholar : PubMed/NCBI
|