1
|
Molina-Pinelo S, Gutierrez G, Pastor MD,
Her-Gueta M, Moreno-Bueno G, Garcia-Carbonero R, Nogal A, Suarez R,
Salinas A, Pozo-Rodriguez F, et al: MicroRNA-dependent regulation
of transcription in non-small cell lung cancer. PLoS One.
9:e905242014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Schwander B, Ravera S, Giuliani G, Nuijten
M and Walzer S: Cost comparison of second-line treatment options
for late stage non-small-cell lung cancer: Cost analysis for Italy.
Clinicoecon Outcomes Res. 4:237–243. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Boch C, Kollmeier J, Roth A,
Stephan-Falkenau S, Misch D, Gruning W, Bauer TT and Mairinger T:
The frequency of EGFR and KRAS mutations in non-small cell lung
cancer (NSCLC): Routine screening data for central Europe from a
cohort study. BMJ Open. 3:e0025602013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Raji OY, Duffy SW, Agbaje OF, Baker SG,
Christiani DC, Cassidy A and Field JK: Predictive accuracy of the
Liverpool Lung Project risk model for stratifying patients for
computed tomography screening for lung cancer: A case-control and
cohort validation study. Ann Intern Med. 157:242–250. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Didkowska J, Wojciechowska U, Mańczuk M
and Łobaszewski J: Lung cancer epidemiology: Contemporary and
future challenges worldwide. Ann Transl Med. 4:1502016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sharp A, Bhosle J, Abdelraouf F, Popat S,
O'Brien M and Yap TA: Development of molecularly targeted agents
and immunotherapies in small cell lung cancer. Eur J Cancer.
60:26–39. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kumarakulasinghe NB, van Zanwijk N and Soo
RA: Molecular targeted therapy in the treatment of advanced stage
non-small cell lung cancer (NSCLC). Respirology. 20:370–378. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Spiegel ML, Goldman JW, Wolf BR, Nameth
DJ, Grogan TR, Lisberg AE, Wong DJL, Ledezma BA, Mendenhall MA,
Genshaft SJ, et al: Non-small cell lung cancer clinical trials
requiring biopsies with biomarker-specific results for enrollment
provide unique challenges. Cancer. 123:4800–4807. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Reck M: Pembrolizumab as first-line
therapy for metastatic non-small-cell lung cancer. Immunotherapy.
10:93–105. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Majumder S and Chari ST: Chronic
pancreatitis. Lancet. 387:1957–1966. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Knowles SM and Wu AM: Advances in
immuno-positron emission tomography: Antibodies for molecular
imaging in oncology. J Clin Oncol. 30:3884–3892. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fu R, Carroll L, Yahioglu G, Aboagye EO
and Miller PW: Antibody fragment and affibody immunoPET imaging
agents: Radiolabelling strategies and applications. ChemMedChem.
13:2466–2478. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li C, Wen B, Wang L, Feng H, Xia X, Ding
Z, Gao B, Zhang Y and Lan X: 99mTc-labeled single-domain
antibody EG2 in targeting epidermal growth factor receptor. Nucl
Med Commun. 36:452–460. 2015.PubMed/NCBI
|
14
|
Mishani E, Abourbeh G, Eiblmaier M and
Anderson CJ: Imaging of EGFR and EGFR tyrosine kinase
overexpression in tumors by nuclear medicine modalities. Curr Pharm
Des. 14:2983–2998. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Peña Y, Perera A and Batista JF:
Immunoscintigraphy and radioimmunotherapy in Cuba: Experiences with
labeled monoclonal antibodies for cancer diagnosis and treatment
(1993–2013). MEDICC Rev. 16:55–60. 2014.
|
16
|
Weidner N: Intratumor microvessel density
as a prognostic factor in cancer. Am J Pathol. 147:9–19.
1995.PubMed/NCBI
|
17
|
Folkman J: The role of angiogenesis in
tumor growth. Semin Cancer Biol. 3:65–71. 1992.PubMed/NCBI
|
18
|
Folkman J: Angiogenesis. Annu Rev Med.
57:1–18. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ribatti D: History of research on
angiogenesis. Chem Immunol Allergy. 99:1–14. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Greenlee MC, Sullivan SA and Bohlson SS:
Detection and characterization of soluble CD93 released during
inflammation. Inflamm Res. 58:909–919. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kao YC, Jiang SJ, Pan WA, Wang KC, Chen
PK, Wei HJ, Chen WS, Chang BI, Shi GY and Wu HL: The epidermal
growth factor-like domain of CD93 is a potent angiogenic factor.
PLoS One. 7:e516472012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Langenkamp E, Zhang L, Lugano R, Huang H,
Elhassan TE, Georganaki M, Bazzar W, Loof J, Trendelenburg G,
Essand M, et al: Elevated expression of the C-type lectin CD93 in
the glioblastoma vasculature regulates cytoskeletal rearrangements
that enhance vessel function and reduce host survival. Cancer Res.
75:4504–4516. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lugano R, Vemuri K, Yu D, Bergqvist M,
Smits A, Essand M, Johansson S, Dejana E and Dimberg A: CD93
promotes β1 integrin activation and fibronectin fibrillogenesis
during tumor angiogenesis. J Clin Invest. 128:3280–3297. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Andersson H, Lindegren S, Bäck T,
Jacobsson L, Leser G and Horvath G: Biokinetics of the monoclonal
antibodies MOv 18, OV 185 and OV 197 labelled with 125I according
to the m-MeATE method or the Iodogen method in nude mice with
ovarian cancer xenografts. Acta Oncol. 38:323–328. 1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sun H, Zhan Y, Liang T, Zhang C, Song J,
Han J and Hou G: In vivo Toll-like receptor5 (TLR5) imaging with
radiolabeled anti-TLR5 monoclonal antibody in rapamycin-treated
mouse allogeneic skin transplantation model. Transpl Infect Dis.
17:80–88. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
van Dongen GA, Visser GW, Lub-de Hooge MN,
de Vries EG and Perk LR: Immuno-PET: A navigator in monoclonal
antibody development and applications. Oncologist. 12:1379–1389.
2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Carmon KS and Azhdarinia A: Application of
immuno-PET in antibody-drug conjugate development. Mol Imaging.
17:15360121188012232018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ehlerding EB, England CG, Jiang D, Graves
SA, Kang L, Lacognata S, Barnhart TE and Cai W: CD38 as a PET
imaging target in lung cancer. Mol Pharm. 14:2400–2406. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Carmeliet P and Jain RK: Angiogenesis in
cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Carmeliet P: Angiogenesis in health and
disease. Nat Med. 9:653–660. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ribatti D: Judah Folkman, a pioneer in the
study of angiogenesis. Angiogenesis. 11:3–10. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Otrock ZK, Mahfouz RA, Makarem JA and
Shamseddine AI: Understanding the biology of angiogenesis: Review
of the most important molecular mechanisms. Blood Cells Mol Dis.
39:212–220. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Khan KA, Naylor AJ, Khan A, Noy PJ,
Mambretti M, Lodhia P, Athwal J, Korzystka A, Buckley CD, Willcox
BE, et al: Multimerin-2 is a ligand for group 14 family C-type
lectins CLEC14A, CD93 and CD248 spanning the endothelial pericyte
interface. Oncogene. 36:6097–6108. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Greenlee MC, Sullivan SA and Bohlson SS:
CD93 and related family members: Their role in innate immunity.
Curr Drug Targets. 9:130–138. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bao L, Tang M, Zhang Q, You B, Shan Y, Shi
S, Li L, Hu S and You Y: Elevated expression of CD93 promotes
angiogenesis and tumor growth in nasopharyngeal carcinoma. Biochem
Biophys Res Commun. 476:467–474. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Orlandini M, Galvagni F, Bardelli M,
Rocchigiani M, Lentucci C, Anselmi F, Zippo A, Bini L and Oliviero
S: The characterization of a novel monoclonal antibody against CD93
unveils a new antiangiogenic target. Oncotarget. 5:2750–2760. 2014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Cancer Genome Atlas Research Network, .
Comprehensive molecular profiling of lung adenocarcinoma. Nature.
511:543–550. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cancer Genome Atlas Research Network, .
Comprehensive genomic characterization of squamous cell lung
cancers. Nature. 489:519–525. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Campbell JD, Alexandrov A, Kim J, Wala J,
Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA, et
al: Distinct patterns of somatic genome alterations in lung
adenocarcinomas and squamous cell carcinomas. Nat Genet.
48:607–616. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hoda SA and Cheng E: Robbins basic
pathology. Am J Clin Pathol. 2017. View Article : Google Scholar
|
41
|
Kawase A, Yoshida J, Ishii G, Nakao M,
Aokage K, Hishida T, Nishimura M and Nagai K: Differences between
squamous cell carcinoma and adenocarcinoma of the lung: Are
adenocarcinoma and squamous cell carcinoma prognostically equal?
Jpn J Clin Oncol. 42:189–195. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu J, Yang XY and Shi WJ: Identifying
differentially expressed genes and pathways in two types of
non-small cell lung cancer: Adenocarcinoma and squamous cell
carcinoma. Genet Mol Res. 13:95–102. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Schuurbiers OC, Meijer TW, Kaanders JH,
Looigen-Salamon MG, de Geus-Oei LF, van der Drift MA, van der
Heijden EH, Oyen WJ, Visser EP, Span PN and Bussink J: Glucose
metabolism in NSCLC is histology-specific and diverges the
prognostic potential of 18FDG-PET for adenocarcinoma and
squamous cell carcinoma. J Thorac Oncol. 9:1485–1493. 2014.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Koh YW, Lee SJ and Park SY: Differential
expression and prognostic significance of GLUT1 according to
histologic type of non-small-cell lung cancer and its association
with volume-dependent parameters. Lung Cancer. 104:31–37. 2017.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Graves EE, Maity A and Le QT: The tumor
microenvironment in non-small-cell lung cancer. Semin Radiat Oncol.
20:156–163. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shi J, Schmid-Bindert G, Fink C, Sadurski
S, Apfaltrer P, Poilz LR, Liu B, Haberland U, Klotz E, Zhou C, et
al: Dynamic volume perfusion CT in patients with lung cancer:
Baselineperfusion characteristics of different histological
subtypes. Eur J Radiol. 82:e894–e900. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ma SH, Xu K, Xiao ZW, Wu M, Sun ZY, Wang
ZX, Hu ZG, Dai X, Han MJ and Li YG: Peripheral lung cancer:
Relationship between multi-slice spiral CT perfusion imaging and
tumor angiogenesis and cyclin D1 expression. Clin Imaging.
31:165–177. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Li Y, Yang ZG, Chen TW, Chen HJ, Sun JY
and Lu YR: Peripheral lung carcinoma: Correlation of angiogenesis
and first-pass perfusion parameters of 64-detector row CT. Lung
Cancer. 61:44–53. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Sauter AW, Winterstein S, Spira D, Hetzel
J, Schulze M, Mueller M, Pfannenberg C, Claussen CD, Klotz E, Hann
von Weyhern C and Horger MS: Multifunctional profiling of non-small
cell lung cancer using 18F-FDG PET/CT and volume
perfusion CT. J Nucl Med. 53:521–529. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
van Elmpt W, Zegers CML, Reymen B, Even
AJG, Dingemans AC, Oellers M, Wildberger JE, Mottaghy FM, Das M,
Troost EGC and Lambin P: Multiparametric imaging of patient and
tumor heterogeneity in non-small-cell lung cancer: Quantification
of tumor hypoxia, metabolism and perfusion. Eur J Nucl Med Mol
Imaging. 43:240–248. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Nakano S, Gibo J, Fukushima Y, Kaira K,
Sunaga N, Taketomi-Takahashi A, Tsushima Y and Mori M: Perfusion
evaluation of lung cancer: Assessment using dual-input perfusion
computed tomography. J Thorac Imaging. 28:253–262. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Spira D, Neumeister H, Spira SM, Hetzel J,
Spengler W, von Weyhern CH and Horger M: Assessment of tumor
vascularity in lung cancer using volume perfusion CT (VPCT) with
histopathologic comparison: A further step toward an individualized
tumor characterization. J Comput Assist Tomogr. 37:15–21. 2013.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Kang F, Wang Z, Li G, Wang S, Liu D, Zhang
M, Zhao M, Yang W and Wang J: Inter-heterogeneity and
intra-heterogeneity of αvβ3 in non-small cell lung cancer and small
cell lung cancer patients as revealed by 68Ga-RGD2 PET
imaging. Eur J Nucl Med Mol Imaging. 44:1520–1528. 2017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Jing S, He Y, He Y, Wang L, Jia J, Shan X,
Liu S, Tang M, Peng Z and Liu X: Imaging potential evaluation of
fab derived from the anti-EGFRvIII monoclonal antibody 4G1. Radiat
Res. 190:194–203. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Shi S, Orbay H, Yang Y, Graves SA, Nayak
TR, Hong H, Hernandez R, Luo H, Goel S, Theuer CP, et al: PET
imaging of abdominal aortic aneurysm with 64Cu-labeled
anti-CD105 antibody fab fragment. J Nucl Med. 56:927–932. 2015.
View Article : Google Scholar : PubMed/NCBI
|