1
|
Joyce JA and Pollard JW:
Microenvironmental regulation of metastasis. Nat Rev Cancer.
9:239–252. 2009. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Yashiro M and Hirakawa K: Cancer-stromal
interactions in scirrhous gastric carcinoma. Cancer Microenviron.
3:127–135. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fuyuhiro Y, Yashiro M, Noda S, Matsuoka J,
Hasegawa T, Kato Y, Sawada T and Hirakawa K: Cancer-associated
orthotopic myofibroblasts stimulates the motility of gastric
carcinoma cells. Cancer Sci. 103:797–805. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tripathi M, Billet S and Bhowmick NA:
Understanding the role of stromal fibroblasts in cancer
progression. Cell Adhes Migr. 6:231–235. 2012. View Article : Google Scholar
|
5
|
Harper J and Sainson RC: Regulation of the
anti-tumour immune response by cancer-associated fibroblasts. Semin
Cancer Biol. 25:69–77. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li H, Fan X and Houghton JM: Tumor
microenvironment: The role of the tumor stroma in cancer. J Cell
Biochem. 101:805–815. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Clark RAF: The molecular cell biology of
wound repairPlenum Press New York. 3. pp. 501996
|
8
|
Desmoulière A, Geinoz A, Gabbiani F and
Gabbiani G: Transforming growth factor-beta 1 induces alpha-smooth
muscle actin expression in granulation tissue myofibroblasts and in
quiescent and growing cultured fibroblasts. J Cell Biol.
122:103–111. 1993. View Article : Google Scholar : PubMed/NCBI
|
9
|
Roberts AB, Sporn MB, Assoian RK, Smith
JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl
JH, et al: Transforming growth factor type beta: Rapid induction of
fibrosis and angiogenesis in vivo and stimulation of collagen
formation in vitro. Proc Natl Acad Sci USA. 83:4167–4171. 1986.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Tjomsland V: Studies of the tumor
microenvironment: Local and systemic effects exerted by the
cross-talk between tumor and stroma cells in pancreatic cancer. PhD
dissertation. Linköping UniversityPublication no. 1219. Linköping;
Sweden: 2010
|
11
|
Bhowmick NA, Neilson EG and Moses HL:
Stromal fibroblasts in cancer initiation and progression. Nature.
432:332–337. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
De Wever O and Mareel M: Role of tissue
stroma in cancer cell invasion. J Pathol. 200:429–447. 2003.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Kalluri R and Zeisberg M: Fibroblasts in
cancer. Nat Rev Cancer. 6:392–401. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Micke P and Ostman A: Exploring the tumour
environment: Cancer-associated fibroblasts as targets in cancer
therapy. Expert Opin Ther Targets. 9:1217–1233. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bhowmick NA, Chytil A, Plieth D, Gorska
AE, Dumont N, Shappell S, Washington MK, Neilson EG and Moses HL:
TGF-beta signaling in fibroblasts modulates the oncogenic potential
of adjacent epithelia. Science. 303:848–851. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mbeunkui F and Johann DJ Jr: Cancer and
the tumor microenvironment: A review of an essential relationship.
Cancer Chemother Pharmacol. 63:571–582. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Costea DE, Hills A, Osman AH, Thurlow J,
Kalna G, Huang X, Pena Murillo C, Parajuli H, Suliman S, Kulasekara
KK, et al: Identification of two distinct carcinoma-associated
fibroblast subtypes with differential tumor-promoting abilities in
oral squamous cell carcinoma. Cancer Res. 73:3888–3901. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Routray S, Sunkavali A and Bari KA:
Carcinoma-associated fibroblasts, its implication in head and neck
squamous cell carcinoma: A mini review. Oral Dis. 20:246–253. 2014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Kessenbrock K, Plaks V and Werb Z: Matrix
metalloproteinases: Regulators of the tumor microenvironment. Cell.
141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Naritani M, Inoue M, Raju R, Miyagi M,
Oshima M and Matsuka Y: Analysis of Bone marrow-derived mesenchymal
stem cell kinetics after short-term stimulation with tumor necrosis
factor-α (TNF-α). J Hard Tissue Biol. 28:99–108. 2019. View Article : Google Scholar
|
21
|
Badiavas EV, Abedi M, Butmarc J, Falanga V
and Quesenberry P: Participation of bone marrow derived cells in
cutaneous wound healing. J Cell Physiol. 196:245–250. 2003.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Houghton J, Stoicov C, Nomura S, Rogers
AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR and Wang TC:
Gastric cancer originating from bone marrow-derived cells. Science.
306:1568–1571. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
24
|
Caplan AI: Mesenchymal stem cells. J
Orthop Res. 9:641–650. 1991. View Article : Google Scholar : PubMed/NCBI
|
25
|
Krause DS, Theise ND, Collector MI,
Henegariu O, Hwang S, Gardner R, Neutzel S and Sharkis SJ:
Multi-organ, multi-lineage engraftment by a single bone
marrow-derived stem cell. Cell. 105:369–377. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tsujigiwa H, Nishizaki K, Teshima T,
Takeda Y, Yoshinobu J, Takeuchi A, Orita Y, Sugata Y, Nagatsuka H
and Nagai N: The engraftment of transplanted bone marrow-derived
cells into the olfactory epithelium. Brain Res. 1052:10–15. 2005.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Aghi M and Chiocca EA: Contribution of
bone marrow-derived cells to blood vessels in ischemic tissues and
tumors. Mol Ther. 12:994–1005. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lyden D, Hattori K, Dias S, Costa C,
Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, et
al: Impaired recruitment of bone-marrow-derived endothelial and
hematopoietic precursor cells blocks tumor angiogenesis and growth.
Nat Med. 7:1194–1201. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bamba S, Lee CY, Brittan M, Preston SL,
Direkze NC, Poulsom R, Alison MR, Wright NA and Otto WR: Bone
marrow transplantation ameliorates pathology in interleukin-10
knockout colitic mice. J Pathol. 209:265–273. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kawai H, Tsujigiwa H, Siar CH, Nakano K,
Takabatake K, Fujii M, Hamada M, Tamamura R and Nagatsuka H:
Characterization and potential roles of bone marrow-derived stromal
cells in cancer development and metastasis. Int J Med Sci.
15:1406–1414. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Masui M, Okui T, Shimo T, Takabatake K,
Fukazawa T, Matsumoto K, Kurio N, Ibaragi S, Naomoto Y, Nagatsuka H
and Sasaki A: Novel midkine inhibitor iMDK inhibits tumor growth
and angiogenesis in oral squamous cell carcinoma. Anticancer Res.
36:2775–2781. 2016.PubMed/NCBI
|
32
|
Mhawech-Fauceglia P, Wang D, Samrao D, Kim
G, Lawrenson K, Meneses T, Liu S, Yessaian A and Pejovic T:
Clinical implications of marker expression of carcinoma-associated
fibroblasts (CAFs) in patients with epithelial ovarian carcinoma
after treatment with neoadjuvant chemotherapy. Cancer Microenviron.
7:33–39. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zajchowski DA, Bartholdi MF, Gong Y,
Webster L, Liu HL, Munishkin A, Beauheim C, Harvey S, Ethier SP and
Johnson PH: Identification of gene expression profiles that predict
the aggressive behavior of breast cancer cells. Cancer Res.
61:5168–5178. 2001.PubMed/NCBI
|
34
|
Mellick AS, Day CJ, Weinstein SR,
Griffiths LR and Morrison NA: Differential gene expression in
breast cancer cell lines and stroma-tumor differences in
microdissected breast cancer biopsies revealed by display array
analysis. Int J Cancer. 100:172–180. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Peñuelas S, Noé V and Ciudad CJ:
Modulation of IMPDH2, survivin, topoisomerase I and vimentin
increases sensitivity to methotrexate in HT29 human colon cancer
cells. FEBS J. 272:696–710. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ngan CY, Yamamoto H, Seshimo I, Tsujino T,
Man-i M, Ikeda JI, Konishi K, Takemasa I, Ikeda M, Sekimoto M, et
al: Quantitative evaluation of vimentin expression in tumour stroma
of colorectal cancer. Br J Cancer. 96:986–992. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kasashima H, Yashiro M, Nakamae H, Masuda
G, Kinoshita H, Morisaki T, Fukuoka T, Hasegawa T, Sakurai K,
Toyokawa T, et al: Bone marrow-derived stromal cells are associated
with gastric cancer progression. Br J Cancer. 113:443–452. 2015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Ishii S, Tsuji S, Tsujii M, Kanazawa Y,
Nishida T, Iijima H, Yasumaru M, Irie T, Yamamoto K, Tsutsui S, et
al: Involvement of bone marrow-derived stromal cells in
gastrointestinal cancer development and metastasis. J Gastroenterol
Hepatol. 23 (Suppl 2):S242–S249. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Udagawa T, Puder M, Wood M, Schaefer BC
and D'Amato RJ: Analysis of tumor-associated stromal cells using
SCID GFP transgenic mice: Contribution of local and bone
marrow-derived host cells. FASEB J. 20:95–102. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Colegio OR, Chu NQ, Szabo AL, Chu T,
Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC,
Phillips GM, et al: Functional polarization of tumour-associated
macrophages by tumour-derived lactic acid. Nature. 513:559–563.
2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Komohara Y, Jinushi M and Takeya M:
Clinical significance of macrophage heterogeneity in human
malignant tumors. Cancer Sci. 105:1–8. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Asahara T, Murohara T, Sullivan A, Silver
M, van der Zee R, Li T, Witzenbichler B, Schatteman G and Isner JM:
Isolation of putative progenitor endothelial cells for
angiogenesis. Science. 275:964–967. 1997. View Article : Google Scholar : PubMed/NCBI
|
43
|
Le Ricousse-Roussanne LS, Barateau V,
Contreres JO, Boval B, Kraus-Berthier L and Tobelem G: Ex vivo
differentiated endothelial and smooth muscle cells from human cord
blood progenitors home to the angiogenic tumor vasculature.
Cardiovasc Res. 62:176–184. 2004. View Article : Google Scholar : PubMed/NCBI
|
44
|
Orimo A, Gupta PB, Sgroi DC,
Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL
and Weinberg RA: Stromal fibroblasts present in invasive human
breast carcinomas promote tumor growth and angiogenesis through
elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Direkze NC, Forbes SJ, Brittan M, Hunt T,
Jeffery R, Preston SL, Poulsom R, Hodivala-Dilke K, Alison MR and
Wright NA: Multiple organ engraftment by bone-marrow-derived
myofibroblasts and fibroblasts in bone-marrow-transplanted mice.
Stem Cells. 21:514–520. 2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
Karnoub AE, Dash AB, Vo AP, Sullivan A,
Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R and Weinberg
RA: Mesenchymal stem cells within tumour stroma promote breast
cancer metastasis. Nature. 449:557–563. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Quante M, Tu SP, Tomita H, Gonda T, Wang
SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, et al: Bone
marrow-derived myofibroblasts contribute to the mesenchymal stem
cell niche and promote tumor growth. Cancer Cell. 19:257–272. 2011.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Ohgushi H and Caplan AI: Stem cell
technology and bioceramics: From cell to gene engineering. J Biomed
Mater Res. 48:913–927. 1999. View Article : Google Scholar : PubMed/NCBI
|