1
|
Döhner H, Weisdorf DJ and Bloomfield CD:
Acute myeloid leukemia. N Engl J Med. 373:1136–1152. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Stone RM, Mandrekar SJ, Sanford BL,
Laumann K, Geyer S, Bloomfield CD, Thiede C, Prior TW, Döhner K,
Marcucci G, et al: Midostaurin plus chemotherapy for acute myeloid
leukemia with a FLT3 mutation. N Engl J Med. 377:454–464. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Choi EJ, Lee JH, Lee JH, Park HS, Ko SH,
Hur EH, Moon J, Goo BK, Kim Y, Seol M, et al: Comparison of
anthracyclines used for induction chemotherapy in patients with
FLT3-ITD-mutated acute myeloid leukemia. Leuk Res. 68:51–56. 2018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Liu Y, He P, Liu F, Shi L, Zhu H, Zhao J,
Wang Y, Cheng X and Zhang M: Prognostic significance of NPM1
mutations in acute myeloid leukemia: A meta-analysis. Mol Clin
Oncol. 2:275–281. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Boddu P, Kantarjian H, Borthakur G, Kadia
T, Daver N, Pierce S, Andreeff M, Ravandi F, Cortes J and Kornblau
SM: Co-occurrence of FLT3-TKD and NPM1 mutations defines a highly
favorable prognostic AML group. Blood Adv. 1:1546–1550. 2017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Yamaura T, Nakatani T, Uda K, Ogura H,
Shin W, Kurokawa N, Saito K, Fujikawa N, Date T, Takasaki M, et al:
A novel irreversible FLT3 inhibitor, FF-10101, shows excellent
efficacy against AML cells with FLT3 mutations. Blood. 131:426–438.
2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Vardiman JW, Thiele J, Arber DA, Brunning
RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM,
Hellström-Lindberg E, Tefferi A and Bloomfield CD: The 2008
revision of the World Health Organization (WHO) classification of
myeloid neoplasms and acute leukemia: Rationale and important
changes. Blood. 114:937–951. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pallisgaard N, Hokland P, Riishøj DC,
Pedersen B and Jørgensen P: Multiplex reverse
transcription-polymerase chain reaction for simultaneous screening
of 29 translocations and chromosomal aberrations in acute leukemia.
Blood. 92:574–588. 1998. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang YL, Lin SR, Chen JS, Hsiao CC, Lin
KH, Sheen JM, Cheng CN, Wu KH, Lin SW, Yu SL, et al: Multiplex
reverse transcription-polymerase chain reaction as diagnostic
molecular screening of 4 common fusion chimeric genes in Taiwanese
children with acute lymphoblastic leukemia. J Pediatr Hematol
Oncol. 32:e323–e330. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gou H, Zhou J, Ye Y, Hu X, Shang M, Zhang
J, Zhao Z, Peng W, Zhou Y, Zhou Y, et al: The prevalence and
clinical profiles of FLT3-ITD, FLT3-TKD, NPM1, C-KIT, DNMT3A, and
CEBPA mutations in a cohort of patients with de novo acute myeloid
leukemia from southwest China. Tumour Biol. 37:7357–7370. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhu Y, Zhao H, Zhang X, Wu Y, Xie Y, Li Y,
Lian Y, Huang J, Li J, Chen Y and Qian S: Decitabine prior to
low-dose cytarabine-based chemotherapy combined with HLA-mismatched
stem cell micro-transplantation improved outcomes in elderly
patients with newly diagnosed acute myeloid leukaemia. Biol Blood
Marrow Transplant. 23:830–835. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kottaridis PD, Gale RE, Frew ME, Harrison
G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett
AK, et al: The presence of a FLT3 internal tandem duplication in
patients with acute myeloid leukemia (AML) adds important
prognostic information to cytogenetic risk group and response to
the first cycle of chemotherapy: Analysis of 854 patients from the
United Kingdom Medical Research Council AML 10 and 12 trials.
Blood. 98:1752–1759. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Stone RM, DeAngelo DJ, Klimek V, Galinsky
I, Estey E, Nimer SD, Grandin W, Lebwohl D, Wang Y, Cohen P, et al:
Patients with acute myeloid leukemia and an activating mutation in
FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor,
PKC412. Blood. 105:54–60. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Smith BD, Levis M, Beran M, Giles F,
Kantarjian H, Berg K, Murphy KM, Dauses T, Allebach J and Small D:
Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and
clinical activity in patients with relapsed or refractory acute
myeloid leukemia. Blood. 103:3669–3676. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kindler T, Lipka DB and Fischer T: FLT3 as
a therapeutic target in AML: Still challenging after all these
years. Blood. 116:5089–5102. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ding L, Ley TJ, Larson DE, Miller CA,
Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan
MD, et al: Clonal evolution in relapsed acute myeloid leukaemia
revealed by whole-genome sequencing. Nature. 481:506–510. 2012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Shlush LI, Mitchell A, Heisler L, Abelson
S, Ng SWK, Trotman- Grant A, Medeiros JJF, Rao-Bhatia A,
Jaciw-Zurakowsky I, Marke R, et al: Tracing the origins of relapse
in acute myeloid leukaemia to stem cells. Nature. 547:104–108.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fröhling S, Schlenk RF, Breitruck J,
Benner A, Kreitmeier S, Tobis K, Döhner H and Döhner K; AML Study
Group Ulm, : Acute myeloid leukemia: Prognostic significance of
activating FLT3 mutations in younger adults (16 to 60 years) with
acute myeloid leukemia and normal cytogenetics: A study of the AML
Study Group Ulm. Blood. 100:4372–4380. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Thiede C, Steudel C, Mohr B, Schaich M,
Schäkel U, Platzbecker U, Wermke M, Bornhäuser M, Ritter M,
Neubauer A, et al: Analysis of FLT3-activating mutations in 979
patients with acute myelogenous leukemia: Association with FAB
subtypes and identification of subgroups with poor prognosis.
Blood. 99:4326–4335. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Leick MB and Levis MJ: The future of
targeting FLT3 activation in AML. Curr Hematol Malig Rep.
12:153–167. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ostronoff F, Othus M, Lazenby M, Estey E,
Appelbaum FR, Evans A, Godwin J, Gilkes A, Kopecky KJ, Burnett A,
et al: Prognostic significance of NPM1 mutations in the absence of
FLT3-internal tandem duplication in older patients with acute
myeloid leukemia: A SWOG and UK national cancer research
institute/medical research council report. J Clin Oncol.
33:1157–1164. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Patel SS, Kuo FC, Gibson CJ, Steensma DP,
Soiffer RJ, Alyea EP 3rd, Chen YA, Fathi AT, Graubert TA, Brunner
AM, et al: High NPM1-mutant allele burden at diagnosis predicts
unfavorable outcomes in de novo AML. Blood. 131:2816–2825. 2018.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Döhner H, Estey E, Grimwade D, Amadori S,
Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA,
et al: Diagnosis and management of AML in adults: 2017 ELN
recommendations from an international expert panel. Blood.
129:424–447. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Loghavi S, Zuo Z, Ravandi F, Kantarjian
HM, Bueso-Ramos C, Zhang L, Singh RR, Patel KP, Medeiros LJ, Stingo
F, et al: Clinical features of de novo acute myeloid leukemia with
concurrent DNMT3A, FLT3 and NPM1 mutations. J Hematol Oncol.
7:742014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bur illo-Sanz S, Morales-Camacho RM,
Caballero-Velázquez T, Vargas MT, García-Lozano JR, Falantes JF,
Prats-Martín C, Bernal R and Pérez-Simón JA: NUP98-HOXA9 bearing
therapy-related myeloid neoplasm involves myeloid-committed cell
and induces HOXA5, EVI1, FLT3, and MEIS1 expression. Int J Lab
Hematol. 38:64–71. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cagnetta A, Adamia S, Acharya C, Patrone
F, Miglino M, Nencioni A, Gobbi M and Cea M: Role of genotype-based
approach in the clinical management of adult acute myeloid leukemia
with normal cytogenetics. Leuk Res. 38:649–659. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mori M and Spraque J: The successful
remission induction by sorafenib and long-term complete remission
in a FLT3-ITD-positive patient with a refractory acute erythroid
leukemia and abnormal cytogenetics. Leuk Res. 36:e1–e3. 2012.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Libura M, Giebel S, Piatkowska-Jakubas B,
Pawelczyk M, Florek I, Matiakowska K, Jazwiec B, Borg K, Solarska
I, Zawada M, et al: Cladribine added to daunorubicin-cytarabine
induction prolongs survival of FLT3-ITD+ normal
karyotype AML patients. Blood. 127:360–262. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Stein EM: FLT3 inhibitors for relapsed or
refractory acute myeloid leukaemia. Lancet Oncol. 19:845–850. 2018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Cortes JE, Tallman MS, Schiller GJ, Trone
D, Gammon G, Goldberg SL, Perl AE, Marie JP, Martinelli G,
Kantarjian HM and Levis MJ: Phase 2b study of two dosing regimens
of quizartinib monotherapy in FLT3-ITD mutated, relapsed or
refractory AML. Blood. 132:598–607. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Quizartinib bests chemo for FLT3-mutant
AML. Cancer Discov. 8:OF22018. View Article : Google Scholar
|
32
|
Cortes J, Perl AE, Döhner H, Kantarjian H,
Martinelli G, Kovacsovics T, Rousselot P, Steffen B, Dombret H,
Estey E, et al: Quizartinib, an FLT3 inhibitor, as monotherapy in
patients with relapsed or refractory acute myeloid leukaemia: an
open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol.
19:889–903. 2018. View Article : Google Scholar : PubMed/NCBI
|