Research progress on the interactions between long non‑coding RNAs and microRNAs in human cancer (Review)
- Authors:
- Binyu Sun
- Chunxia Liu
- Hao Li
- Lu Zhang
- Gang Luo
- Sicheng Liang
- Muhan Lü
-
Affiliations: Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China - Published online on: December 4, 2019 https://doi.org/10.3892/ol.2019.11182
- Pages: 595-605
-
Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR and Ruvkun G: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI | |
Remsburg C, Konrad K, Sampilo NF and Song JL: Analysis of microRNA functions. Methods Cell Biol. 151:323–334. 2019. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van England M, Herman JG, Baylin SB and Weijenberg MP: A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet. 31:141–149. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vishnoi A and Rani S: MiRNA biogenesis and regulation of diseases: An overview. Methods Mol Biol. 1509:1–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lintner NG and Cate JHD: Regulating the ribosome: A spotlight on RNA dark matter. Mol Cell. 54:1–2. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brannan CI, Dees EC, Ingram RS and Tilghman SM: The product of the H19 gene may function as an RNA. Mol Cell Biol. 10:28–36. 1990. View Article : Google Scholar : PubMed/NCBI | |
Spizzo R, Almeida MI, Colombatti A and Calin GA: Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene. 31:4577–4587. 2012. View Article : Google Scholar : PubMed/NCBI | |
Arriaga-Canon C, Fonseca-Guzmán Y, Valdes-Quezada C, Arzate-Mejía R, Guerrero G and Recillas-Targa F: A long non-coding RNA promotes full activation of adult gene expression in the chicken α-globin domain. Epigenetics. 9:173–181. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bergmann JH and Spector DL: Long non-coding RNAs: Modulators of nuclear structure and function. Curr Opin Cell Boil. 26:10–18. 2014. View Article : Google Scholar | |
Majoros WH and Ohler U: Spatial preferences of microRNA targets in 3′untranslated regions. BMC Genomics. 8:1522007. View Article : Google Scholar : PubMed/NCBI | |
Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A and Rinn JL: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25:1915–1927. 2011. View Article : Google Scholar : PubMed/NCBI | |
Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, Chen Y and Liu XS: Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol. 20:908–913. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Yu Q, Gong Y, Liu Z, Xu H, Wang Y and Shi Y: Construction of a lncRNA-miRNA-mRNA network to determine the regulatory roles of lncRNAs in psoriasis. Exp Ther Med. 18:4011–4021. 2019.PubMed/NCBI | |
Dong Z, Zhang A, Liu S, Lu F, Guo Y, Zhang G, Xu F, Shi Y, Shen S, Liang J and Guo W: Aberrant methylation-mediated silencing of lncRNA MEG3 functions as aceRNA in esophageal cancer. Mol Cancer Res. 15:800–810. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI | |
Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lewis BP, Burge CB and Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120:15–20. 2005. View Article : Google Scholar : PubMed/NCBI | |
Seitz H: Redefining microRNA targets. Curr Biol. 19:870–873. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guo G, Kang Q, Zhu X, Chen Q, Wang X, Chen Y, Ouyang J, Zhang L, Tan H, Chen R, et al: A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA. Oncogene. 34:1768–1779. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ergun S and Oztuzcu S: Oncocers: CeRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways. Tumour Biol. 36:3129–3136. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S and Scaria V: Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One. 8:e538232013. View Article : Google Scholar : PubMed/NCBI | |
Lü MH, Tang B, Zeng S, Hu CJ, Xie R, Wu YY, Wang SM, He FT and Yang SM: Long noncoding RNA BC032469, a novel competing endogenous RNA, upregulates hTERT expression by sponging miR-1207-5p and promotes proliferation in gastric cancer. Oncogene. 35:3524–3534. 2016. View Article : Google Scholar : PubMed/NCBI | |
Karreth FA and Pandolfi PP: ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov. 3:1113–1121. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo LL, Song CH, Wang P, Dai LP, Zhang JY and Wang KJ: Competing endogenous RNA networks and gastric cancer. World J Gastroenterol. 21:11680–11687. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X and Liu H: Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 25:69–80. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ørom UA and Shiekhattar R: Long non-coding RNAs and enhancers. Curr Opin Genet Dev. 21:194–198. 2011. View Article : Google Scholar : PubMed/NCBI | |
Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G and Reik W: The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 14:659–665. 2012. View Article : Google Scholar : PubMed/NCBI | |
Da Sacco L and Masotti A: Recent insights and novel bioinformatics tools to understand the role of microRNAs binding to 5′untranslated region. Int J Mol Sci. 14:480–495. 2012. View Article : Google Scholar : PubMed/NCBI | |
López-Urrutia E, Bustamante Montes LP, Ladrón de Guevara Cervantes D, Pérez-Plasencia C and Campos-Parra AD: Crosstalk between long non-coding RNAs, Micro-RNAs and mRNAs: Deciphering molecular mechanisms of master regulators in cancer. Front Oncol. 9:6692019. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Zhao Y, Yang S, Zhang H, Wu Q and Chen F: An integrated evolutionary analysis of miRNA-lncRNA in mammals. Mol Biol Rep. 41:201–207. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Sun L, Zhang Y, Lu G, Li Y and Wei Z: Long non-coding RNA FEZF1-AS1 promotes breast cancer stemness and tumorigenesis via targeting miR-30a/Nanog axis. J Cell Physiol. 233:8630–8638. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS, Xu D, Bi HS, Wang F and Sun SH: Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 34:577–586. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun M and Kraus W: From discovery to function: The expanding roles of long non-coding RNAs in physiology and disease. Endocr Rev. 7:er000099992015.(Epub ahead of print). View Article : Google Scholar | |
Yuan JH, Yang F, Chen BF, Lu Z, Huo XS, Zhou WP, Wang F and Sun SH: The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology. 54:2025–2035. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M and Sui G: MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer. 9:1082010. View Article : Google Scholar : PubMed/NCBI | |
Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, Möller P, Stilgenbauer S, Pollack JR and Wirth T: MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood. 112:4202–4212. 2008. View Article : Google Scholar : PubMed/NCBI | |
Benetatos L, Voulgaris E, Vartholomatos G and Hatzimichael E: Non-coding RNAs and EZH2 interactions in cancer: Long and short tales from the transcriptome. Int J Cancer. 133:267–274. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, Singh B, Franklin JL, Wang J, Hu H, et al: lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med. 23:1331–1341. 2017. View Article : Google Scholar : PubMed/NCBI | |
Erdmann VA, Szymanski M, Hochberg A, Groot N and Barciszewski J: Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Res. 28:197–200. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mituyama T, Yamada K, Hattori E, Okida H, Ono Y, Terai G, Yoshizawa A, Komori T and Asai K: The Functional RNA Database 3.0: Databases to support mining and annotation of functional RNAs. Nucleic Acids Res. 37:D89–D92. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM and Mattick JS: NRED: A database of long noncoding RNA expression. Nucleic Acids Res. 37:D122–D126. 2009. View Article : Google Scholar : PubMed/NCBI | |
Amaral PP, Clark MB, Gascoigne DK, Dinger ME and Mattick JS: lncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Res. 39:D146–D151. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang JH, Li JH, Jiang S, Zhou H and Qu LH: ChIPBase: A database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res. 41:D177–D187. 2013. View Article : Google Scholar : PubMed/NCBI | |
Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, Vandesompele J and Mestdagh P: LNCipedia: A database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 41:D246–D251. 2013. View Article : Google Scholar : PubMed/NCBI | |
Paraskevopoulou MD, Georgakilas G, Kostoulas N, Reczko M, Maragkakis M, Dalamagas TM and Hatzigeorgiou AG: DIANA-LncBase: Experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 41:D239–D245. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cook KB, Kazan H, Zuberi K, Morris Q and Hughes TR: RBPDB: A database of RNA-binding specificities. Nucleic Acids Res. 39:D301–D308. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li JH, Liu S, Zhou H, Qu LH and Yang JH: starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42:D92–D97. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hsu PW, Huang HD, Hsu SD, Lin LZ, Tsou AP, Tseng CP, Stadler PF, Washietl S and Hofacker IL: miRNAMap: Genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res. 34:D135–D139. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cui T, Zhang L, Huang Y, Yi Y, Tan P, Zhao Y, Hu Y, Xu L, Li E and Wang D: MNDR v2.0: An updated resource of ncRNA-disease associations in mammals. Nucleic Acids Res. 46:D371–D374. 2018.PubMed/NCBI | |
Yan B, Wang ZH and Guo JT: The research strategies for probing the function of long noncoding RNAs. Genomics. 99:76–80. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, et al: Long noncoding RNAs with enhancer-like function in human cells. Cell. 143:46–58. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D and Lachman HM: RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One. 6:e233562011. View Article : Google Scholar : PubMed/NCBI | |
Alwine JC, Kemp DJ and Stark GR: Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA. 74:5350–5354. 1977. View Article : Google Scholar : PubMed/NCBI | |
Heid CA, Stevens J, Livak KJ and Williams PM: Real time quantitative PCR. Genome Res. 6:986–994. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty D, Kappei D, Theis M, Nitzsche A, Ding L, Paszkowski-Rogacz M, Surendranath V, Berger N, Schulz H, Saar K, et al: Combined RNAi and localization for functionally dissecting long noncoding RNAs. Nat Methods. 9:360–362. 2012. View Article : Google Scholar : PubMed/NCBI | |
Alberts B, Johnson A and Lewis J: Fractionation of Cells. Molecular Biology of the Cell. 4th. New York: Garland Science; 2002 | |
Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE and Wengel J: LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron. 54:3607–3630. 1998. View Article : Google Scholar | |
Zhang F, Wen Y and Guo X: CRISPR/Cas9 for genome editing: Progress, implications and challenges. Hum Mol Genet. 23:R40–R46. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391:806–811. 1998. View Article : Google Scholar : PubMed/NCBI | |
Keene JD, Komisarow JM and Friedersdorf MB: RIP-Chip: The isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc. 1:302–307. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M and Lee JT: Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell. 40:939–953. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bellucci M, Agostini F, Masin M and Tartaglia GG: Predicting protein associations with long noncoding RNAs. Nat Methods. 8:444–445. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lagarde J, Uszczynska-Ratajczak B, Carbonell S, Pérez-Lluch S, Abad A, Davis C, Gingeras TR, Frankish A, Harrow J, Guigo R and Johnson R: High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nat Genet. 49:1731–1740. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tanizawa H and Noma K: Unravelling global genome organization by 3C-seq. Semin Cell Dev Biol. 23:213–221. 2012. View Article : Google Scholar : PubMed/NCBI | |
Splinter E, de Wit E, van de Werken HJ, Klous P and de Laat W: Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: From fixation to computation. Methods. 58:221–230. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dostie J and Dekker J: Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc. 2:988–1002. 2007. View Article : Google Scholar : PubMed/NCBI | |
Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y and Dekker J: Hi-C: A comprehensive technique to capture the conformation of genomes. Methods. 58:268–276. 2012. View Article : Google Scholar : PubMed/NCBI | |
Severs NJ: Freeze-fracture electron microscopy. Nat Protoc. 2:547–576. 2007. View Article : Google Scholar : PubMed/NCBI | |
Olivarius S, Plessy C and Carninci P: High-throughput verification of transcriptional starting sites by Deep-RACE. BioTechniques. 46:130–132. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cossu AM, Mosca L, Zappavigna S, Misso G, Bocchetti M, De Micco F, Quagliuolo L, Porcelli M, Caraglia M and Boccellino M: Long non-coding RNAs as important biomarkers in laryngeal cancer and other head and neck tumours. Int J Mol Sci. 20:E34442019. View Article : Google Scholar : PubMed/NCBI | |
Nappi L and Nichols C: MicroRNAs as biomarkers for germ cell tumors. Urol Clin North Am. 46:449–457. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang YF, Zhang HY, Ke J, Shen H, Ou HB and Liu Y: Overexpression of LncRNA GHET1 predicts an unfavourable survival and clinical parameters of patients in various cancers. J Cell Mol Med. 23:4891–4899. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moody L, Dvoretskiy S, An R, Mantha S and Pan YX: The efficacy of miR-20a as a diagnostic and prognostic biomarker for colorectal cancer: A systematic review and meta-analysis. Cancers (Basel). 11:E11112019. View Article : Google Scholar : PubMed/NCBI | |
Permuth JB, Chen DT, Yoder SJ, Li J, Smith AT, Choi JW, Kim J, Balagurunathan Y, Jiang K, Coppola D, et al: Linc-ing Circulating Long Non-coding RNAs to the Diagnosis and Malignant Prediction of Intraductal Papillary Mucinous Neoplasms of the Pancreas. Sci Rep. 7:104842017. View Article : Google Scholar : PubMed/NCBI | |
Li A, Yu J, Kim H, Wolfgang CL, Canto MI, Hruban RH and Goggins M: Serum miR-1290 as a marker of pancreatic cancer-response. Clin Cancer Res. 19:5252–5253. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Tang Y, Tang C, Cong H, Wang X, Shen X and Ju S: Diminished LINC00173 expression induced miR-182-5p accumulation promotes cell proliferation, migration and apoptosis inhibition via AGER/NF-κB pathway in non-small-cell lung cancer. Am J Transl Res. 11:4248–4262. 2019.PubMed/NCBI | |
Li XY, Zhou LY, Luo H, Zhu Q, Zuo L, Liu GY, Feng C, Zhao JY, Zhang YY and Li X: The long noncoding RNA MIR210HG promotes tumor metastasis by acting as a ceRNA of miR-1226-3p to regulate mucin-1c expression in invasive breast cancer. Aging (Albany NY). 11:5646–5665. 2019.PubMed/NCBI | |
Zhang Y, Zhu Z, Huang S, Zhao Q, Huang C, Tang Y, Sun C, Zhang Z, Wang L, Chen H, et al: lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCD4. Cancer Cell Int. 19:1982019. View Article : Google Scholar : PubMed/NCBI | |
Hu L, Ye H, Huang G, Luo F, Liu Y, Liu Y, Yang X, Shen J, Liu Q and Zhang J: Long noncoding RNA GAS5 suppresses the migration and invasion of hepatocellular carcinoma cells via miR-21. Tumour Biol. 37:2691–2702. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Zheng J, Deng J, Zhang L, Li N, Li W, Li F, Lu J and Zhou Y: LincRNAuc002yug.2 involves in alternative splicing of RUNX1 and serves as a predictor for esophageal cancer and prognosis. Oncogene. 34:4723–4734. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Zhang Z, Mao C, Zhou Y, Yu L, Yin Y, Wu S, Mou X and Zhu Y: ANRIL inhibits p15(INK4b) through the TGFβ1 signaling pathway in human esophageal squamous cell carcinoma. Cell Immunol. 289:91–96. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang M, Sang Y, Gu H, Zheng L, Wang L, Liu C, Shi Y, Shao A, Ding G, Chen G, et al: Long noncoding RNAs POLR2E rs3787016 C/T and HULC rs7763881 A/C polymorphisms are associated with decreased risk of esophageal cancer. Tumour Biol. 36:6401–6408. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang E, Han L, Yin D, He X, Hong L, Si X, Qiu M, Xu T, De W, Xu L, et al: H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma. Nucleic Acids Res. 45:3086–3101. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mazzu YZ, Yoshikawa Y, Nandakumar S, Chakraborty G, Armenia J, Jehane LE, Lee GM and Kantoff PW: Methylation-associated miR-193b silencing activates master drivers of aggressive prostate cancer. Mol Oncol. 13:1944–1958. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Feng Y, Li X, Jiang Z, Bei B, Zhang L, Han Y, Li Y and Li N: Post-transcriptional gene regulation in colitis associated cancer. Front Genet. 10:5852019. View Article : Google Scholar : PubMed/NCBI | |
Qadir MI, Bukhat S, Rasul S, Manzoor H and Manzoor M: RNA therapeutics: Identification of novel targets leading to drug discovery. J Cell Biochem. 2019:(Epub ahead of print). | |
Meng X, Li X, Zhang P, Wang J, Zhou Y and Chen M: Circular RNA: An emerging key player in RNA world. Brief Bioinform. 18:547–557. 2017.PubMed/NCBI | |
Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sato K and Siomi MC: Piwi-interacting RNAs: Biological functions and biogenesis. Essays Biochem. 54:39–52. 2013. View Article : Google Scholar : PubMed/NCBI | |
Busch J, Ralla B, Jung M, Wotschofsky Z, Trujillo-Arribas E, Schwabe P, Kilic E, Fendler A and Jung K: Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J Exp Clin Cancer Res. 34:612015. View Article : Google Scholar : PubMed/NCBI |