1
|
Lino-Silva LS, Zepeda-Najar C,
Salcedo-Hernández RA and Martinez-Said H: Acral lentiginous
melanoma: Survival analysis of 715 cases. J Cutan Med Surg.
23:38–43. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Häfliger EM, Ramelyte E, Mangana J, Kunz
M, Kazakov DV, Dummer R and Cheng PF: Metastatic acral lentiginous
melanoma in a tertiary referral center in Switzerland: A systematic
analysis. Melanoma Res. 28:442–450. 2018.PubMed/NCBI
|
3
|
Kim HJ, Seo JW, Roh MS, Lee JH and Song
KH: Clinical features and prognosis of Asian patients with acral
lentiginous melanoma who have nodal nevi in their sentinel lymph
node biopsy specimen. J Am Acad Dermatol. 79:706–713. 2018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Nakamura Y and Fujisawa Y: Diagnosis and
management of acral lentiginous melanoma. Curr Treat Options Oncol.
19:422018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wada M, Ito T, Tsuji G, Nakahara T,
Hagihara A, Furue M and Uchi H: Acral lentiginous melanoma versus
other melanoma: A single-center analysis in Japan. J Dermatol.
44:932–938. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hombach S and Kretz M: Non-coding RNAs:
Classification, biology and functioning. Adv Exp Med Biol.
937:3–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kondo Y, Shinjo K and Katsushima K: Long
non-coding RNAs as an epigenetic regulator in human cancers. Cancer
Sci. 108:1927–1933. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yu X, Zheng H, Tse G, Chan MT and Wu WK:
Long non-coding RNAs in melanoma. Cell Prolif. 51:e124572018.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Tang L, Zhang W, Su B and Yu B: Long
noncoding RNA HOTAIR is associated with motility, invasion, and
metastatic potential of metastatic melanoma. Biomed Res Int.
2013:2510982013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun L, Sun P, Zhou QY, Gao X and Han Q:
Long noncoding RNA MALAT1 promotes uveal melanoma cell growth and
invasion by silencing of miR-140. Am J Transl Res. 8:3939–3946.
2016.PubMed/NCBI
|
11
|
Flockhart RJ, Webster DE, Qu K,
Mascarenhas N, Kovalski J, Kretz M and Khavari PA: BRAFV600E
remodels the melanocyte transcriptome and induces BANCR to regulate
melanoma cell migration. Genome Res. 22:1006–1014. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li R, Zhang L, Jia L, Duan Y, Li Y, Bao L
and Sha N: Long non-coding RNA BANCR promotes proliferation in
malignant melanoma by regulating MAPK pathway activation. PLoS One.
9:e1008932014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xu S, Wang H, Pan H, Shi Y, Li T, Ge S,
Jia R, Zhang H and Fan X: ANRIL lncRNA triggers efficient
therapeutic efficacy by reprogramming the aberrant INK4-hub in
melanoma. Cancer Lett. 381:41–48. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pasmant E, Laurendeau I, Héron D, Vidaud
M, Vidaud D and Bièche I: Characterization of a germ-line deletion,
including the entire INK4/ARF locus, in a melanoma-neural system
tumor family: Identification of ANRIL, an antisense noncoding RNA
whose expression coclusters with ARF. Cancer Res. 67:3963–3969.
2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mazar J, Zhao W, Khalil AM, Lee B, Shelley
J, Govindarajan SS, Yamamoto F, Ratnam M, Aftab MN, Collins S, et
al: The functional characterization of long noncoding RNA SPRY4-IT1
in human melanoma cells. Oncotarget. 5:8959–8969. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Khaitan D, Dinger ME, Mazar J, Crawford J,
Smith MA, Mattick JS and Perera RJ: The melanoma-upregulated long
noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer
Res. 71:3852–3862. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu CF, Tan GH, Ma CC and Li L: The
non-coding RNA llme23 drives the malignant property of human
melanoma cells. J Genet Genomics. 40:179–188. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wei Y, Sun Q, Zhao L, Wu J, Chen X, Wang
Y, Zang W and Zhao G: LncRNA UCA1-miR-507-FOXM1 axis is involved in
cell proliferation, invasion and G0/G1 cell cycle arrest in
melanoma. Med Oncol. 33:882016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tian Y, Zhang X, Hao Y, Fang Z and He Y:
Potential roles of abnormally expressed long noncoding RNA UCA1 and
Malat-1 in metastasis of melanoma. Melanoma Res. 24:335–341. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Schmidt K, Joyce CE, Buquicchio F, Brown
A, Ritz J, Distel RJ, Yoon CH and Novina CD: The lncRNA SLNCR1
mediates melanoma invasion through a conserved SRA1-like region.
Cell Rep. 15:2025–2037. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Leucci E, Vendramin R, Spinazzi M,
Laurette P, Fiers M, Wouters J, Radaelli E, Eyckerman S, Leonelli
C, Vanderheyden K, et al: Melanoma addiction to the long non-coding
RNA SAMMSON. Nature. 531:518–522. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Larionov A, Krause A and Miller W: A
standard curve based method for relative real time PCR data
processing. BMC Bioinformatics. 6:622005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Forrest ME and Khalil AM: Review:
Regulation of the cancer epigenome by long non-coding RNAs. Cancer
Lett. 407:106–112. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu N, Wang F, Lv M and Cheng L: Microarray
expression profile analysis of long non-coding RNAs in human breast
cancer: A study of Chinese women. Biomed Pharmacother. 69:221–227.
2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sand M, Bechara FG, Sand D, Gambichler T,
Hahn SA, Bromba M, Stockfleth E and Hessam S: Long-noncoding RNAs
in basal cell carcinoma. Tumour Biol. 37:10595–10608. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Xue Y, Ma G, Gu D, Zhu L, Hua Q, Du M, Chu
H, Tong N, Chen J, Zhang Z and Wang M: Genome-wide analysis of long
noncoding RNA signature in human colorectal cancer. Gene.
556:227–234. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Dorsky RI, Moon RT and Raible DW: Control
of neural crest cell fate by the Wnt signalling pathway. Nature.
396:370–373. 1998. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Kim KI, Jeong DS, Jung EC, Lee JH, Kim CD
and Yoon TJ: Wnt/β-catenin signaling inhibitor ICG-001 enhances
pigmentation of cultured melanoma cells. J Dermatol Sci.
84:160–168. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
van Lanschot CG, Koljenovic S, Grunhagen
DJ, Verhoef C and van Akkooi AC: Pigmentation in the sentinel node
correlates with increased sentinel node tumor burden in melanoma
patients. Melanoma Res. 24:261–266. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen KG, Leapman RD, Zhang G, Lai B,
Valencia JC, Cardarelli CO, Vieira WD, Hearing VJ and Gottesman MM:
Influence of melanosome dynamics on melanoma drug sensitivity. J
Natl Cancer Inst. 101:1259–1271. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hertzman Johansson C, Azimi A, Frostvik
Stolt M, Shojaee S, Wiberg H, Grafström E, Hansson J and Egyházi
Brage S: Association of MITF and other melanosome-related proteins
with chemoresistance in melanoma tumors and cell lines. Melanoma
Res. 23:360–365. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tajima N, Itokazu Y, Korpi ER, Somerharju
P and Käkelä R: Activity of BK(Ca) channel is modulated by membrane
cholesterol content and association with Na+/K+-ATPase in human
melanoma IGR39 cells. J Biol Chem. 286:5624–5638. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang Y, Luo Z, Hao Y, Ba W, Wang R, Wang
W, Ding X and Li C: mTOR-mediated Na+/Ca2+
exchange affects cell proliferation and metastasis of melanoma
cells. Biomed Pharmacother. 92:744–749. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kuphal S and Bosserhoff AK: E-cadherin
cell-cell communication in melanogenesis and during development of
malignant melanoma. Arch Biochem Biophys. 524:43–47. 2012.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Rossier-Pansier L, Baruthio F, Rüegg C and
Mariotti A: Compartmentalization in membrane rafts defines a pool
of N-cadherin associated with catenins and not engaged in cell-cell
junctions in melanoma cells. J Cell Biochem. 103:957–971. 2008.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Chalkiadaki G, Nikitovic D, Katonis P,
Berdiaki A, Tsatsakis A, Kotsikogianni I, Karamanos NK and
Tzanakakis GN: Low molecular weight heparin inhibits melanoma cell
adhesion and migration through a PKCa/JNK signaling pathway
inducing actin cytoskeleton changes. Cancer Lett. 312:235–244.
2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Schmitz P, Gerber U, Schütze N, Jüngel E,
Blaheta R, Naggi A, Torri G and Bendas G: Cyr61 is a target for
heparin in reducing MV3 melanoma cell adhesion and migration via
the integrin VLA-4. Thromb Haemost. 110:1046–1054. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cheng H, Mollica MY, Lee SH, Wang L,
Velazquez-Martinez CA and Wu S: Effects of nitric oxide-releasing
nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell
adhesion. Toxicol Appl Pharmacol. 264:161–166. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Takabe P, Bart G, Ropponen A, Rilla K,
Tammi M, Tammi R and Pasonen-Seppänen S: Hyaluronan synthase 3
(HAS3) overexpression downregulates MV3 melanoma cell
proliferation, migration and adhesion. Exp Cell Res. 337:1–15.
2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Valcárcel M, Mendoza L, Hernández JJ,
Carrascal T, Salado C, Crende O and Vidal-Vanaclocha F: Vascular
endothelial growth factor regulates melanoma cell adhesion and
growth in the bone marrow microenvironment via tumor
cyclooxygenase-2. J Transl Med. 9:1422011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Foy M, Anézo O, Saule S and Planque N:
PRL-3/PTP4A3 phosphatase regulates integrin β1 in adhesion
structures during migration of human ocular melanoma cells. Exp
Cell Res. 353:88–99. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
van Kilsdonk JW, Takahashi N, Weidle U,
Burtscher H, Jarry J, Daha MR, Swart GW and van Kempen LC:
Modulation of activated leukocyte cell adhesion molecule-mediated
invasion triggers an innate immune gene response in melanoma. J
Invest Dermatol. 132:1462–1470. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ullrich N, Löffek S, Horn S, Ennen M,
Sánchez-Del-Campo L, Zhao F, Breitenbuecher F, Davidson I, Singer
BB, Schadendorf D, et al: MITF is a critical regulator of the
carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1)
in malignant melanoma. Pigment Cell Melanoma Res. 28:736–740. 2015.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Meves A, Nikolova E, Heim JB, Squirewell
EJ, Cappel MA, Pittelkow MR, Otley CC, Behrendt N, Saunte DM,
Lock-Andersen J, et al: Tumor cell adhesion as a risk factor for
sentinel lymph node metastasis in primary cutaneous melanoma. J
Clin Oncol. 33:2509–2515. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kang NY, Kim CH, Kim KS, Ko JH, Lee JH,
Jeong YK and Lee YC: Expression of the human CMP-NeuAc:GM3
alpha2,8-sialyltransferase (GD3 synthase) gene through the
NF-kappaB activation in human melanoma SK-MEL-2 cells. Biochim
Biophys Acta. 1769:622–630. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Miyata M, Ichihara M, Tajima O, Sobue S,
Kambe M, Sugiura K and Furukawa K and Furukawa K: UVB-irradiated
keratinocytes induce melanoma-associated ganglioside GD3 synthase
gene in melanocytes via secretion of tumor necrosis factor α and
interleukin 6. Biochem Biophys Res Commun. 445:504–510. 2014.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Goto Y, Arigami T, Kitago M, Nguyen SL,
Narita N, Ferrone S, Morton DL, Irie RF and Hoon DS: Activation of
Toll-like receptors 2, 3, and 4 on human melanoma cells induces
inflammatory factors. Mol Cancer Ther. 7:3642–3653. 2008.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Saint-Jean M, Knol AC, Nguyen JM, Khammari
A and Dréno B: TLR expression in human melanoma cells. Eur J
Dermatol. 21:899–905. 2011.PubMed/NCBI
|
49
|
Feng R, Gong J, Wu L, Wang L, Zhang B,
Liang G, Zheng H and Xiao H: MAPK and Hippo signaling pathways
crosstalk via the RAF-1/MST-2 interaction in malignant melanoma.
Oncol Rep. 38:1199–1205. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kim JE, Finlay GJ and Baguley BC: The role
of the hippo pathway in melanocytes and melanoma. Front Oncol.
3:1232013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Menzel M, Meckbach D, Weide B, Toussaint
NC, Schilbach K, Noor S, Eigentler T, Ikenberg K, Busch C,
Quintanilla-Martinez L, et al: In melanoma, Hippo signaling is
affected by copy number alterations and YAP1 overexpression impairs
patient survival. Pigment Cell Melanoma Res. 27:671–673. 2014.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Nallet-Staub F, Marsaud V, Li L, Gilbert
C, Dodier S, Bataille V, Sudol M, Herlyn M and Mauviel A:
Pro-invasive activity of the Hippo pathway effectors YAP and TAZ in
cutaneous melanoma. J Invest Dermatol. 134:123–132. 2014.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Takazawa Y, Kiniwa Y, Ogawa E, Uchiyama A,
Ashida A, Uhara H, Goto Y and Okuyama R: Toll-like receptor 4
signaling promotes the migration of human melanoma cells. Tohoku J
Exp Med. 234:57–65. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Yuan H, Liu H, Liu Z, Zhu D, Amos CI, Fang
S, Lee JE and Wei Q: Genetic variants in Hippo pathway genes YAP1,
TEAD1 and TEAD4 are associated with melanoma-specific survival. Int
J Cancer. 137:638–645. 2015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Hall CA, Wang R, Miao J, Oliva E, Shen X,
Wheeler T, Hilsenbeck SG, Orsulic S and Goode S: Hippo pathway
effector Yap is an ovarian cancer oncogene. Cancer Res.
70:8517–8525. 2010. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kang W, Tong JH, Chan AW, Lee TL, Lung RW,
Leung PP, So KK, Wu K, Fan D, Yu J, et al: Yes-associated protein 1
exhibits oncogenic property in gastric cancer and its nuclear
accumulation associates with poor prognosis. Clin Cancer Res.
17:2130–2139. 2011. View Article : Google Scholar : PubMed/NCBI
|