1
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Cetin K, Ettinger DS, Hei YJ and O'Malley
CD: Survival by histologic subtype in stage IV nonsmall cell lung
cancer based on data from the surveillance, epidemiology and end
results program. Clin Epidemiol. 3:139–148. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pilkington G, Boland A, Brown T, Oyee J,
Bagust A and Dickson R: A systematic review of the clinical
effectiveness of first-line chemotherapy for adult patients with
locally advanced or metastatic non-small cell lung cancer. Thorax.
70:359–367. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Scagliotti GV, Parikh P, von Pawel J,
Biesma B, Vansteenkiste J, Manegold C, Serwatowski P, Gatzemeier U,
Digumarti R, Zukin M, et al: Phase III study comparing cisplatin
plus gemcitabine with cisplatin plus pemetrexed in
chemotherapy-naive patients with advanced-stage non-small-cell lung
cancer. J Clin Oncol. 26:3543–3551. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Noh JM, Kim JM, Ahn YC, Pyo H, Kim B, Oh
D, Ju SG, Kim JS, Shin JS, Hong CS, et al: Effect of radiation
therapy techniques on outcome in N3-positive IIIB non-small cell
lung cancer treated with concurrent chemoradiotherapy. Cancer Res
Treat. 48:106–114. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Luke JJ and Ott PA: PD-1 pathway
inhibitors: The next generation of immunotherapy for advanced
melanoma. Oncotarget. 6:3479–3492. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Creelan BC: Update on immune checkpoint
inhibitors in lung cancer. Cancer Control. 21:80–89. 2014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Horn L, Spigel DR, Vokes EE, Holgado E,
Ready N, Steins M, Poddubskaya E, Borghaei H, Felip E, Paz-Ares L,
et al: Nivolumab versus docetaxel in previously treated patients
with advanced non-small-cell lung cancer: Two-year outcomes from
two randomized, open-label, phase III trials (CheckMate 017 and
CheckMate 057). J Clin Oncol. 35:3924–3933. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pastina P, Nardone V, Botta C, Croci S,
Tini P, Battaglia G, Ricci V, Cusi MG, Gandolfo C, Misso G, et al:
Radiotherapy prolongs the survival of advanced non-small-cell lung
cancer patients undergone to an immune-modulating treatment with
dose-fractioned cisplatin and metronomic etoposide and bevacizumab
(mPEBev). Oncotarget. 8:75904–75913. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pastina P, Nardone V, Croci S, Battaglia
G, Vanni F, Bellan C, Barbarino M, Ricci V, Costantini S, Capone F,
et al: Anti-cancer activity of dose-fractioned mPE +/- bevacizumab
regimen is paralleled by immune-modulation in advanced squamous
NSLC patients. J Thorac Dis. 9:3123–3131. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nardone V, Pastina P, Giannicola R,
Agostino R, Croci S, Tini P, Pirtoli L, Giordano A, Tagliaferri P
and Correale P: How to increase the efficacy of immunotherapy in
NSCLC and HNSCC: Role of radiation therapy, chemotherapy, and other
strategies. Front Immunol. 9:29412018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ganeshan B, Panayiotou E, Burnand K,
Dizdarevic S and Miles K: Tumour heterogeneity in non-small cell
lung carcinoma assessed by CT texture analysis: A potential marker
of survival. Eur Radiol. 22:796–802. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ganeshan B, Abaleke S, Young RC, Chatwin
CR and Miles KA: Texture analysis of non-small cell lung cancer on
unenhanced computed tomography: Initial evidence for a relationship
with tumour glucose metabolism and stage. Cancer Imaging.
10:137–143. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ganeshan B, Miles KA, Young RC and Chatwin
CR: Hepatic enhancement in colorectal cancer: Texture analysis
correlates with hepatic hemodynamics and patient survival. Acad
Radiol. 14:1520–1530. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Alobaidli S, McQuaid S, South C, Prakash
V, Evans P and Nisbet A: The role of texture analysis in imaging as
an outcome predictor and potential tool in radiotherapy treatment
planning. Br J Radiol. 87:201403692014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mattonen SA, Tetar S, Palma DA, Louie AV,
Senan S and Ward AD: Imaging texture analysis for automated
prediction of lung cancer recurrence after stereotactic
radiotherapy. J Med Imaging (Bellingham). 2:0410102015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mattonen SA, Palma DA, Haasbeek CJ, Senan
S and Ward AD: Early prediction of tumor recurrence based on CT
texture changes after stereotactic ablative radiotherapy (SABR) for
lung cancer. Med Phys. 41:0335022014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Coroller TP, Agrawal V, Narayan V, Hou Y,
Grossmann P, Lee SW, Mak RH and Aerts HJ: Radiomic phenotype
features predict pathological response in non-small cell lung
cancer. Radiother Oncol. 119:480–486. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Nardone V, Tini P, Carbone SF, Grassi A,
Biondi M, Sebaste L, Carfagno T, Vanzi E, De Otto G, Battaglia G,
et al: Bone texture analysis using CT-simulation scans to
individuate risk parameters for radiation-induced insufficiency
fractures. Osteoporos Int. 28:1915–1923. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nardone V, Tini P, Nioche C, Biondi M,
Sebaste L, Mazzei MA, Banci Buonamici F and Pirtoli L: Texture
analysis of parotid gland as a predictive factor of radiation
induced xerostomia: A subset analysis. Radiother Oncol.
122:3212017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nardone V, Tini P, Croci S, Carbone SF,
Sebaste L, Carfagno T, Battaglia G, Pastina P, Rubino G, Mazzei MA
and Pirtoli L: 3D bone texture analysis as a potential predictor of
radiation-induced insufficiency fractures. Quant Imaging Med Surg.
8:14–24. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Nardone V, Tini P, Nioche C, Mazzei MA,
Carfagno T, Battaglia G, Pastina P, Grassi R, Sebaste L and Pirtoli
L: Texture analysis as a predictor of radiation-induced xerostomia
in head and neck patients undergoing IMRT. Radiol Med. 123:415–423.
2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu Y, Liu S, Qu F, Li Q, Cheng R and Ye
Z: Tumor heterogeneity assessed by texture analysis on
contrast-enhanced CT in lung adenocarcinoma: Association with
pathologic grade. Oncotarget. 8:53664–53674. 2017.PubMed/NCBI
|
25
|
Bae JM, Jeong JY, Lee HY, Sohn I, Kim HS,
Son JY, Kwon OJ, Choi JY, Lee KS and Shim YM: Pathologic
stratification of operable lung adenocarcinoma using radiomics
features extracted from dual energy CT images. Oncotarget.
8:523–535. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lee G, Lee HY, Park H, Schiebler ML, van
Beek EJR, Ohno Y, Seo JB and Leung A: Radiomics and its emerging
role in lung cancer research, imaging biomarkers and clinical
management: State of the art. Eur J Radiol. 86:297–307. 2017.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Craigie M, Squires J and Miles K: Can CT
measures of tumour heterogeneity stratify risk for nodal metastasis
in patients with non-small cell lung cancer? Clin Radiol.
72:899.e1–899.e7. 2017. View Article : Google Scholar
|
28
|
Fave X, Zhang L, Yang J, Mackin D, Balter
P, Gomez D, Followill D, Jones AK, Stingo F, Liao Z, et al:
Delta-radiomics features for the prediction of patient outcomes in
non-small cell lung cancer. Sci Rep. 7:5882017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Miles KA: How to use CT texture analysis
for prognostication of non-small cell lung cancer. Cancer Imaging.
16:102016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sacconi B, Anzidei M, Leonardi A, Boni F,
Saba L, Scipione R, Anile M, Rengo M, Longo F, Bezzi M, et al:
Analysis of CT features and quantitative texture analysis in
patients with lung adenocarcinoma: A correlation with EGFR
mutations and survival rates. Clin Radiol. 72:443–450. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhou M, Leung A, Echegaray S, Gentles A,
Shrager JB, Jensen KC, Berry GJ, Plevritis SK, Rubin DL, Napel S
and Gevaert O: Non-small cell lung cancer radiogenomics map
identifies relationships between molecular and imaging phenotypes
with prognostic implications. Radiology. 286:307–315. 2018.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu Y, Kim J, Balagurunathan Y, Li Q,
Garcia AL, Stringfield O, Ye Z and Gillies RJ: Radiomic features
are associated with EGFR mutation status in lung adenocarcinomas.
Clin Lung Cancer. 17:441–448.e6. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Halpenny DF, Plodkowski A, Riely G, Zheng
J, Litvak A, Moscowitz C and Ginsberg MS: Radiogenomic evaluation
of lung cancer-are there imaging characteristics associated with
lung adenocarcinomas harboring BRAF mutations? Clin Imaging.
42:147–151. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nioche C, Orlhac F, Boughdad S, Reuze S,
Soussan M, Robert C, Barakat C and Buvat I: A freeware for tumor
heterogeneity characterization in PET, SPECT, CT, MRI and US to
accelerate advances in radiomics. J Nucl Med. 58 (Suppl
1):S13162017.
|
35
|
Camp RL, Dolled-Filhart M and Rimm DL:
X-tile: A new bio-informatics tool for biomarker assessment and
outcome-based cut-point optimization. Clin Cancer Res.
10:7252–7259. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
van der Schaaf A, Xu CJ, van Luijk P,
Van't Veld AA, Langendijk JA and Schilstra C: Multivariate modeling
of complications with data driven variable selection: Guarding
against overfitting and effects of data set size. Radiother Oncol.
105:115–121. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Giannicola R, D'Arrigo G, Botta C,
Agostino R, Del Medico P, Falzea AC, Barbieri V, Staropoli N, Del
Giudice T, Pastina P, et al: Early blood rise in auto-antibodies to
nuclear and smooth muscle antigens is predictive of prolonged
survival and autoimmunity in metastatic-non-small cell lung cancer
patients treated with PD-1 immune-check point blockade by
nivolumab. Mol Clin Oncol. 11:81–90. 2019.PubMed/NCBI
|
38
|
Mazzei MA, Nardone V, Di Giacomo L,
Bagnacci G, Gentili F, Tini P, Marrelli D and Volterrani L: The
role of delta radiomics in gastric cancer. Quant Imaging Med Surg.
8:719–721. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nardone V, Reginelli A, Scala F, Carbone
SF, Mazzei MA, Sebaste L, Carfagno T, Battaglia G, Pastina P,
Correale P, et al: Magnetic-resonance-imaging texture analysis
predicts early progression in rectal cancer patients undergoing
neoadjuvant chemoradiation. Gastroenterol Res Pract.
2019:85057982019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lee HY, Jeong JY, Lee KS, Yi CA, Kim BT,
Kang H, Kwon OJ, Shim YM and Han J: Histopathology of lung
adenocarcinoma based on new IASLC/ATS/ERS classification:
Prognostic stratification with functional and metabolic imaging
biomarkers. J Magn Reson Imaging. 38:905–913. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kim YN, Lee HY, Lee KS, Seo JB, Chung MJ,
Ahn MJ, Park K, Kim TS and Yi CA: Dual-energy CT in patients
treated with anti-angiogenic agents for non-small cell lung cancer:
New method of monitoring tumor response? Korean J Radiol.
13:702–710. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
van Elmpt W, Zegers CML, Reymen B, Even
AJG, Dingemans AC, Oellers M, Wildberger JE, Mottaghy FM, Das M,
Troost EGC and Lambin P: Multiparametric imaging of patient and
tumour heterogeneity in non-small-cell lung cancer: Quantification
of tumour hypoxia, metabolism and perfusion. Eur J Nucl Med Mol
Imaging. 43:240–248. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chi JT, Thrall DE, Jiang C, Snyder S, Fels
D, Landon C, McCall L, Lan L, Hauck M, MacFall JR, et al:
Comparison of genomics and functional imaging from canine sarcomas
treated with thermoradiotherapy predicts therapeutic response and
identifies combination therapeutics. Clin Cancer Res. 17:2549–2560.
2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tini P, Nardone V, Pastina P, Pirtoli L,
Correale P and Giordano A: The effects of radiotherapy on the
survival of patients with unresectable non-small cell lung cancer.
Expert Rev Anticancer Ther. 18:593–602. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Virginia BM, Laura F, Silvia R, Roberto F,
Francesco F, Eva H, Charles F, Samy A, Stefan M, Jean-Charles S, et
al: Prognostic value of histogram analysis in advanced non-small
cell lung cancer: A radiomic study. Oncotarget. 9:1906–1914. 2018.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Bera K, Velcheti V and Madabhushi A: Novel
quantitative imaging for predicting response to therapy: Techniques
and clinical applications. Am Soc Clin Oncol Educ Book.
38:1008–1018. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Trebeschi S, Drago SG, Birkbak NJ,
Kurilova I, Cǎlin AM, Pizzi AD, Lalezari F, Lambregts DMJ, Rohaan
M, Parmar C, et al: Predicting response to cancer immunotherapy
using non-invasive radiomic biomarkers. Ann Oncol. Mar
21–2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
48
|
Harmon S, Seder CW, Chen S, Traynor A,
Jeraj R and Blasberg JD: Quantitative FDG PET/CT may help
risk-stratify early-stage non-small cell lung cancer patients at
risk for recurrence following anatomic resection. J Thorac Dis.
11:1106–1116. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Shi L, He Y, Yuan Z, Benedict S, Valicenti
R, Qiu J and Rong Y: Radiomics for response and outcome assessment
for non-small cell lung cancer. Technol Cancer Res Treat.
17:15330338187827882018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Einenkel J, Braumann UD, Horn LC, Pannicke
N, Kuska JP, Schütz A, Hentschel B and Höckel M: Evaluation of the
invasion front pattern of squamous cell cervical carcinoma by
measuring classical and discrete compactness. Comput Med Imaging
Graph. 31:428–435. 2007. View Article : Google Scholar : PubMed/NCBI
|
51
|
Nardone V, Nanni S, Pastina P, Vinciguerra
C, Cerase A, Correale P, Guida C, Giordano A, Tini P, Reginelli A,
et al: Role of perilesional edema and tumor volume in the prognosis
of non-small cell lung cancer (NSCLC) undergoing radiosurgery (SRS)
for brain metastases. Strahlenther Onkol. 195:734–744. 2019.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Grove O, Berglund AE, Schabath MB, Aerts
HJ, Dekker A, Wang H, Velazquez ER, Lambin P, Gu Y, Balagurunathan
Y, et al: Quantitative computed tomographic descriptors associate
tumor shape complexity and intratumor heterogeneity with prognosis
in lung adenocarcinoma. PLoS One. 10:e01182612015. View Article : Google Scholar : PubMed/NCBI
|
53
|
Liao Y, Fan X and Wang X: Effects of
different metastasis patterns, surgery and other factors on the
prognosis of patients with stage IV non-small cell lung cancer: A
surveillance, epidemiology, and end results (SEER) linked database
analysis. Oncol Lett. 18:581–592. 2019.PubMed/NCBI
|