1
|
Luo W, Wang T, Hong C, Yang YC, Chen Y,
Cen J, Xie SQ and Wang CJ: Design, synthesis and evaluation of
4-dimethylamine flavonoid derivatives as potential multifunctional
anti-Alzheimer agents. Eur J Med Chem. 122:17–26. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bhounsule AS, Bhatt LK, Prabhavalkar KS
and Oza M: Cyclin dependent kinase 5: A novel avenue for
Alzheimer's disease. Brain Res Bull. 132:28–38. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhao XJ, Gong DM, Jiang YR, Guo D, Zhu Y
and Deng YC: Multipotent AChE and BACE-1 inhibitors for the
treatment of Alzheimer's disease: Design, synthesis and
bio-analysis of 7-amino-1,4-dihydro-2H-isoquilin-3-one derivates.
Eur J Med Chem. 138:738–747. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cieslikiewicz-Bouet M, Chao S, Jean L, et
al: Toward an innovative treatment of Alzheimer's disease:
Synthesis and evaluation of multi-target directed ligands (MTDLs)
targeting acetylcholinesterase (AChE) and alpha7 nicotinic
acetylchloline receptors (alpha7 nAChRs). J Neurochem. 142:209–210.
2017.
|
5
|
Barnett R: Alzheimer's disease. Lancet.
393:15892019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Saxena M and Dubey R: Target enzyme in
Alzheimer's disease: Acetylcholinesterase inhibitors. Curr Top Med
Chem. 19:264–275. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Huang L, Lin J, Xiang S, Zhao K, Yu J,
Zheng J, Xu D, Mak S, Hu S, Nirasha S, et al: Sunitinib, a
clinically used anticancer drug, is a potent AChE inhibitor and
attenuates cognitive impairments in mice. Acs Chem Neurosci.
7:1047–1056. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ghumatkar PJ, Patil SP, Jain PD, Tambe RM
and Sathaye S: Nootropic, neuroprotective and neurotrophic effects
of phloretin in scopolamine induced amnesia in mice. Pharmacol
Biochem Behav. 135:182–191. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sang ZP, Qiang XM, Li Y, Xu R, Cao Z, Song
Q, Wang T, Zhang X, Liu H, Tan Z and Deng Y: Design, synthesis and
evaluation of scutellarein-O-acetamidoalkylbenzylamines as
potential multifunctional agents for the treatment of Alzheimer's
disease. Eur J Med Chem. 135:307–323. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ding L, He S, Wu W, Jin H, Zhu P, Zhang J,
Wang T, Yuan Y and Yan X: Discovery and structure-based
optimization of 6-bromotryptamine derivatives as potential 5-HT2A
receptor antagonists. Molecules. 20:17675–17683. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
He S, Ding L and Yan X: New
6-bromotryptamine derivatives from marine bacterium
pseudoalteromonas rubra QD1-2 and the impact of side chain length
on their cytotoxicity. Planta Med. 79:8452013. View Article : Google Scholar
|
12
|
Chen HX, Xiang SY, Huang L, Lin J, Hu S,
Mak SH, Wang C, Wang Q, Cui W and Han Y: Tacrine(10)-hupyridone, a
dual-binding acetylcholinesterase inhibitor, potently attenuates
scopolamine-induced impairments of cognition in mice. Metab Brain
Dis. 33:1131–1139. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bae HJ, Sowndhararajan K, Park HB, Kim SY,
Kim S, Kim DH, Choi JW, Jang DS, Ryu JH and Park SJ: Danshensu
attenuates scopolamine and amyloid-β-induced cognitive impairments
through the activation of PKA-CREB signaling in mice. Neurochem
Int. 131:1045372019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kraeuter AK, Guest PC and Sarnyai Z: The
open field test for measuring locomotor activity and anxiety-like
behavior. Methods Mol Biol. 1916:99–103. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Overstreet DH: The open field test for
two. J Psychopharmacol. 21:1402007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lueptow LM: Novel object recognition test
for the investigation of learning and memory in mice. J Vis Exp;
2017, View Article : Google Scholar
|
17
|
Chen L, Huang C, Shentu J, Wang M, Yan S,
Zhou F, Zhang Z, Wang C, Han Y, Wang Q and Cui W: Indirubin
derivative 7-bromoindirubin-3-oxime (7Bio) attenuates Aβ
oligomer-induced cognitive impairments in mice. Front Mol Neurosci.
10:3932017. View Article : Google Scholar : PubMed/NCBI
|
18
|
D'Hooge R and De Deyn PP: Applications of
the Morris water maze in the study of learning and memory. Brain
Res Brain Res Rev. 36:60–90. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen H, Wu X, Gu X, Zhou Y, Ye L, Zhang K,
Pan H, Wang J, Wei H, Zhu B, et al: Tacrine(10)-hupyridone prevents
post-operative cognitive dysfunction via the activation of BDNF
pathway and the inhibition of AChE in aged mice. Front Cell
Neurosci. 12:3962018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Santos WP, da Silva Carvalho AC, dos
Santos Estevam C, Santana AE and Marçal RM: In vitro and ex vivo
anticholinesterase activities of Erythrina velutina leaf extracts.
Pharm Biol. 50:919–924. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li FJ, Liu Y, Yuan Y, Yang B, Liu ZM and
Huang LQ: Molecular interaction studies of acetylcholinesterase
with potential acetylcholinesterase inhibitors from the root of
Rhodiola crenulata using molecular docking and isothermal titration
calorimetry methods. Int J Biol Macromol. 104:527–532. 2017.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Jain AN: Surflex-Dock 2.1: Robust
performance from ligand energetic modeling, ring flexibility, and
knowledge-based search. J Comput Aided Mol Des. 21:281–306. 2007.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Xiang S, Liu F, Lin J, Chen H, Huang C,
Chen L, Zhou Y, Ye L, Zhang K, Jin J, et al: Fucoxanthin inhibits
β-amyloid assembly and attenuates β-amyloid oligomer-induced
cognitive impairments. J Agric Food Chem. 65:4092–4102. 2017.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Chunhui H, Dilin X, Ke Z, Jieyi S, Sicheng
Y, Dapeng W, Qinwen W and Wei C: A11-positive β-amyloid oligomer
preparation and assessment using dot blotting analysis. J Vis Exp;
2018, View Article : Google Scholar
|
25
|
Sun K, Bai Y, Zhao R, Guo Z, Su X, Li P
and Yang P: Neuroprotective effects of matrine on
scopolamine-induced amnesia via inhibition of AChE/BuChE and
oxidative stress. Metab Brain Dis. 34:173–181. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nakako T, Iwamura Y, Matsumoto A,
Matsumoto K, Ikejiri M and Ikeda K: Effects of donepezil on
scopolamine-induced cognitive impairment and Alzheimer's
disease-like change in quantitative EEG analysis in rhesus monkeys.
Eur Neuropsychopharm. 27:S736–S737. 2017. View Article : Google Scholar
|
27
|
Li WM, Kan KK, Carlier PR, Pang YP and Han
YF: East meets west in the search for Alzheimer's
therapeutics-novel dimeric inhibitors from tacrine and huperzine a.
Curr Alzheimer Res. 4:386–396. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lazarevic-Pasti T, Leskovac A, Momic T,
Petrovic S and Vasic V: Modulators of acetylcholinesterase
activity: From Alzheimer's disease to anti-cancer drugs. Curr Med
Chem. 24:3283–3309. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xi HJ, Wu RP, Liu JJ, Zhang LJ and Li ZS:
Role of acetylcholinesterase in lung cancer. Thorac Cancer.
6:390–398. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ruiz-Espejo F, Cabezas-Herrera J, Illana
J, Campoy FJ, Muñoz-Delgado E and Vidal CJ: Breast cancer
metastasis alters acetylcholinesterase activity and the composition
of enzyme forms in axillary lymph nodes. Breast Cancer Res Tr.
80:105–114. 2003. View Article : Google Scholar
|
31
|
Ki YS, Park EY, Lee HW, Oh MS, Cho YW,
Kwon YK, Moon JH and Lee KT: Donepezil, a potent
acetylcholinesterase inhibitor, induces caspase-dependent apoptosis
in human promyelocytic leukemia HL-60 cells. Biol Pharm Bull.
33:1054–1059. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hyatt JL, Tsurkan L, Morton CL, Yoon KJ,
Harel M, Brumshtein B, Silman I, Sussman JL, Wadkins RM and Potter
PM: Inhibition of acetylcholinesterase by the anticancer prodrug
CPT-11. Chem-Biol Interact. 157-158:247–252. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
al-Jafari AA, Duhaiman AS and Kamal MA:
Inhibition of human acetylcholinesterase by cyclophosphamide.
Toxicology. 96:1–6. 1995. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cheng S, Zheng W, Gong P, Zhou Q, Xie Q,
Yu L, Zhang P, Chen L, Li J, Chen J, et al:
(−)-Meptazinol-melatonin hybrids as novel dual inhibitors of
cholinesterases and amyloid-β aggregation with high antioxidant
potency for Alzheimer's therapy. Bioorg Med Chem. 23:3110–3118.
2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu FF, Dong XY, He LZ, Middelberg APJ and
Sun Y: Molecular insight into conformational transition of amyloid
β-peptide 42 inhibited by (−)-epigallocatechin-3-gallate probed by
molecular simulations. J Phys Chem B. 115:11879–11887. 2011.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Du WJ, Guo JJ, Gao MT, Hu SQ, Dong XY, Han
YF, Liu FF, Jiang S and Sun Y: Brazilin inhibits amyloid β-protein
fibrillogenesis, remodels amyloid fibrils and reduces amyloid
cytotoxicity. Sci Rep. 5:79922015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Aykac A, Ozbeyli D, Uncu M, Ertaş B,
Kılınc O, Şen A, Orun O and Sener G: Evaluation of the protective
effect of Myrtus communis in scopolamine-induced Alzheimer model
through cholinergic receptors. Gene. 689:194–201. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bird TD: Genetic aspects of Alzheimer
disease. Genet Med. 10:231–239. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang T, Liu XH, Guan J, Ge S, Wu MB, Lin
JP and Yang LR: Advancement of multi-target drug discoveries and
promising applications in the field of Alzheimer's disease. Eur J
Med Chem. 169:200–223. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Jagust W: Imaging the evolution and
pathophysiology of Alzheimer disease. Nat Rev Neurosci. 19:687–700.
2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Scheltens P, Blennow K, Breteler MM, de
Strooper B, Frisoni GB, Salloway S and Van der Flier WM:
Alzheimer's disease. Lancet. 388:505–517. 2016. View Article : Google Scholar : PubMed/NCBI
|