Biology and pathogenesis of human osteosarcoma (Review)
- Authors:
- Judson Welber Veríssimo de Azevedo
- Thales Allyrio Araújo de Medeiros Fernandes
- José Veríssimo Fernandes
- Jenner Chrystian Veríssimo de Azevedo
- Daniel Carlos Ferreira Lanza
- Christiane Medeiros Bezerra
- Vânia Sousa Andrade
- Josélio Maria Galvão de Araújo
- José Veríssimo Fernandes
-
Affiliations: Orthopedic Trauma Clinic Service, Deoclécio Marques Hospital, 59141‑085 Parnamirim, RN, Brazil, Department of Biomedical Sciences, University of Rio Grande do Norte State, 59607‑360 Mossoró, RN, Brazil, Orthopedic Trauma Clinic Service, Getulio Vargas Hospital, 50630‑060 Recife, PE, Brazil, Department of Pediatrics, University Hospital Onofre Lopes, Federal University of Rio Grande do Norte, 59012‑300 Natal, RN, Brazil, Department of Biochemisty, Federal University of Rio Grande do Norte, 59072‑970 Natal, RN, Brazil, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072‑970 Natal, RN, Brazil - Published online on: December 18, 2019 https://doi.org/10.3892/ol.2019.11229
- Pages: 1099-1116
-
Copyright: © de Azevedo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Klein MJ and Siegal GP: Osteosarcoma: Anatomic and histologic variants. Am J Clin Pathol. 125:555–581. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stiller CA, Desandes E, Danon SE, Izarzugaza I, Ratiu A, Vassileva-Valerianova Z and Steliarova-Foucher E: Cancer incidence and survival in European adolescents (1978–1997)-report from the automated childhood cancer information system project. Eur J Cancer. 42:2006–2018. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nie Z and Peng H: Osteosarcoma in patients below 25 years of age-An observational study of incidence, metastasis, treatment and outcomes. Oncol Lett. 16:6502–6514. 2018.PubMed/NCBI | |
Ottaviani G and Jaffe N: The epidemiology of osteosarcoma. Cancer Treat Res. 152:3–13. 2009. View Article : Google Scholar : PubMed/NCBI | |
Geller DS and Gorlick R: Osteosarcoma: A review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol. 8:705–718. 2010.PubMed/NCBI | |
Morrow JJ and Khanna C: Osteosarcoma genetics and epigenetics: Emerging biology and candidate therapies. Crit Rev Oncog. 20:173–197. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rao-Bindal K and Kleinerman ES: Epigenetic regulation of apoptosis and cell cycle in osteosarcoma. Sarcoma. 2011:6794572011. View Article : Google Scholar : PubMed/NCBI | |
Mutsaers AJ and Walkley CR: Cells of origin in osteosarcoma: Mesenchymal stem cells or osteoblast committed cells? Bone. 62:56–63. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Wang G, Chen R, Hua Y and Cai Z: Mesenchymal stem cells in the osteosarcoma microenvironment-their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Res Ther. 9:222018. View Article : Google Scholar : PubMed/NCBI | |
Alfranca A, Martinez-Cruzado L, Tornin J, Abarrategi A, Amaral T, de Alava E, Menendez P, Garcia-Castro J and Rodriguez R: Bone microenvironment signals in osteosarcoma development. Cell Mol Life Sci. 72:3097–3113. 2015. View Article : Google Scholar : PubMed/NCBI | |
Velletri T, Xie N, Wang Y, Huang Y, Yang Q, Chen X, Chen Q, Shou P, Gan Y, Cao G, et al: P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development. Cell Death Dis. 7:e20152016. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Kim YM, Kim HS and Lee KY: Melatonin promotes osteoblast differentiation by regulating Osterix protein stability and expression. Sci Rep. 7:57162017. View Article : Google Scholar : PubMed/NCBI | |
Komori T: Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 149:313–323. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shin MH, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, Gorlick R, Liu C and Huang J: A RUNX2-mediated epigenetic regulation of the survival of p53 defective cancer cells. PLoS Genet. 12:e10058842016. View Article : Google Scholar : PubMed/NCBI | |
Martin JW, Zielenska M, Stein GS, van Wijnen AJ and Squire JA: The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma. 2011:2827452011. View Article : Google Scholar : PubMed/NCBI | |
Molchadsky A, Shats I, Goldfinger N, Pevsner-Fischer M, Olson M, Rinon A, Tzahor E, Lozano Gina G, Zipori D, Sarlig R and Rotter V: p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS One. 3:e37072008. View Article : Google Scholar : PubMed/NCBI | |
Tang N, Song WX, Luo J, Haydon RC and He TC: Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res. 466:2114–2130. 2008. View Article : Google Scholar : PubMed/NCBI | |
Martin JW, Squire JA and Zielenska M: The genetics of osteosarcoma. Sarcoma. 2012:6272542012. View Article : Google Scholar : PubMed/NCBI | |
Sharma S, Kelly TK and Jones PA: Epigenetics in cancer. Carcinogenesis. 31:27–36. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ, Lovat F, LeBlanc K, Palatini J, Randall RL, et al: MicroRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res. 72:1865–1877. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Meng G, Huang L and Guo QN: Hypomethylation of the P3 promoter is associated with up-regulation of IGF2 expression in human osteosarcoma. Hum Pathol. 40:1441–1447. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu J and Wang J: IRX1 hypomethylation in osteosarcoma metastasis. Oncotarget. 6:16802–16803. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lopes-Júnior LC, Silveira DSC, Vulczak A, Santos JC, Veronez LC, Fisch A, Flória-Santos M, Lima RAG and Pereira-da-Silva G: Emerging cytokine networks in osteosarcoma. Oncol Commun. 2:e11672016. | |
Yang Y, Yang R, Roth M, Piperdi S, Zhang W, Dorfman H, Rao P, Park A, Tripathi S, Freeman C, et al: Genetically transforming human osteoblasts to sarcoma: Development of an osteosarcoma model. Genes Cancer. 8:484–494. 2017.PubMed/NCBI | |
Broadhead ML, Clark JCM, Myers DE, Dass CR and Choong PFM: The molecular pathogenesis of osteosarcoma: A review. Sarcoma. 2011:9592482011. View Article : Google Scholar : PubMed/NCBI | |
Denduluri SK, Wang Z, Yan Z, Wang J, Wei Q, Mohammed MK, Haydon RC, Luu HH and He TC: Molecular pathogenesis and therapeutic strategies of human osteosarcoma. J Biomed Res. 30:5–18. 2016. | |
Deng ZL, Sharff KA, Tang N, Song WX, Luo J, Luo X, Chen J, Bennett E, Reid R, Manning D, et al: Regulation of osteogenic differentiation during skeletal development. Front Biosci. 13:2001–2021. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tu B, Peng ZX, Fan QM, Du L, Yan W and Tang TT: Osteosarcoma cells promote the production of pro-tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF-β/Smad2/3 pathway. Exp Cell Res. 320:164–173. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mori T, Sato Y, Miyamoto K, Kobayashi T, Shimizu T, Kanagawa H, Katsuyama E, Fujie A, Hao W, Tando T, et al: TNFα promotes osteosarcoma progression by maintaining tumor cells in an undifferentiated state. Oncogene. 33:4236–4246. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tung PY and Knoepfler PS: Epigenetic mechanisms of tumorigenicity manifesting in stem cells. Oncogene. 34:2288–2296. 2015. View Article : Google Scholar : PubMed/NCBI | |
Klimczak A and Kozlowska U: Mesenchymal stromal cells and tissue-specific progenitor cells: their role in tissue homeostasis. Stem Cells Int. 2016:42852152016. View Article : Google Scholar : PubMed/NCBI | |
Mohseny AB, Szuhai K, Romeo S, Buddingh EP, Briaire-de Bruijn I, de Jong D, van Pel M, Cleton-Jansen AM and Hogendoorn PC: Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J Pathol. 219:294–305. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang D and Liu S: SOX5 promotes epithelial-mesenchymal transition in osteosarcoma via regulation of Snail. J BUON. 22:258–264. 2017.PubMed/NCBI | |
Mannerström B, Kornilov R, Abu-Shahba AG, Chowdhury IM, Sinha S, Seppänen-Kaijansinkko R and Kaur S: Epigenetic alterations in mesenchymal stem cells by osteosarcoma-derived extracellular vesicles. Epigenetics. 14:352–364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Guo J, Zhang K and Guo Y: TP53 mutations and survival in osteosarcoma patients: A meta-analysis of published data. Dis Markers. 2016:46395752016. View Article : Google Scholar : PubMed/NCBI | |
Perry JA, Kiezun A, Tonzi P, Van Allen EM, Carter SL, Baca SC, Cowley GS, Bhatt AS, Rheinbay E, Pedamallu CS, et al: Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci USA. 111:E5564–E5573. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kovac M, Blattmann C, Ribi S, Smida J, Mueller NS, Engert F, Castro-Giner F, Weischenfeldt J, Kovacova M, Krieg A, et al: Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun. 6:89402015. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Niu X, Wang Z, Song CL, Huang Z, Chen KN, Duan J, Bai H, Xu J, Zhao J, et al: Multiregion sequencing reveals the genetic heterogeneity and evolutionary history of osteosarcoma and matched pulmonary metastases. Cancer Res. 79:7–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin PP, Pandey MK, Jin F, Raymond AK, Akiyama H and Lozano G: Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice. Carcinogenesis. 30:1789–1795. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rutkovskiy A, Stensløkken Ko and Vaage IJ: Osteoblast differentiation at a glance. Med Sci Monit Basic Res. 22:95–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
Long F: Building strong bones: Molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 13:27–38. 2011. View Article : Google Scholar : PubMed/NCBI | |
Techavichit P, Gao Y, Kurenbekova L, Shuck R, Donehower LA and Yustein JT: Secreted Frizzled-Related Protein 2 (sFRP2) promotes osteosarcoma invasion and metastatic potential. BMC Cancer. 16:8692016. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Yoo S, Zhou R, Xu A, Bernitz JM, Yuan Y, Gomes AM, Daniel MG, Su J, Demicco EG, et al: Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism. Proc Natl Acad Sci USA. 115:E11128–E11137. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen KS, Kwon WS, Kim J, Heo SJ, Kim HS, Kim HK, Kim SH, Lee WS, Chung HC, Rha SY and Hwang TH: A novel TP53-KPNA3 translocation defines a de novo treatment-resistant clone in osteosarcoma. Cold Spring Harb Mol Case Stud. 2:a0009922016. View Article : Google Scholar : PubMed/NCBI | |
Del Mare S, Kurek KC, Stein GS, Lian JB and Aqeilan RI: Role of the WWOX tumor suppressor gene in bone homeostasis and the pathogenesis of osteosarcoma. Am J Cancer Res. 1:585–594. 2011.PubMed/NCBI | |
Del Mare S and Aqeilan RI: Tumor Suppressor WWOX inhibits osteosarcoma metastasis by modulating RUNX2 function. Sci Rep. 5:129592015. View Article : Google Scholar : PubMed/NCBI | |
Henley SA and Dick FA: The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div. 7:102012. View Article : Google Scholar : PubMed/NCBI | |
Abreu Velez AM and Howard MS: Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin. N Am J Med Sci. 7:176–188. 2015. View Article : Google Scholar : PubMed/NCBI | |
Min EY, Kim IH, Lee J, Kim EY, Choi YH and Nam TJ: The effects of fucodian on senescence are controlled by the p16INK4a-pRb and p14Arf-p53 pathways in hepatocellular carcinoma and hepatic cell lines. Int J Oncol. 45:47–56. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shi D and Gu W: Dual roles of MDM2 in the regulation of p53: Ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer. 3:240–248. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Mao JS and Hu WF: Functional genetic single-nucleotide polymorphisms (SNPs) in cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) locus are associated with risk and prognosis of osteosarcoma in chinese populations. Med Sci Monit. 25:1307–1313. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yu H and Hu W: The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin (Shanghai). 46:180–189. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu Q, Li Y, Mu K, Li Z, Meng Q, Wu X, Wang Y and Li L: Amplification of Mdmx and overexpression of MDM2 contribute to mammary carcinogenesis by substituting for p53 mutations. Diagn Pathol. 9:712014. View Article : Google Scholar : PubMed/NCBI | |
Han G, Wang Y and Bi W: C-Myc overexpression promotes osteosarcoma cell invasion via activation of MEK-ERK pathway. Oncol Res. 20:149–156. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Cai ZD, Lou LM and Zhu YB: Expressions of p53, c-Myc, Bcl-2 and apoptotic index in human osteosarcoma and their correlations with prognosis of patients. Cancer Epidemiol. 36:212–216. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Zhao Z, Huang Z, Chen DC, Zhu XX, Wang YZ, Yan YW, Tang S, Madhavan S, Ni W, et al: Super enhancer inhibitors suppress MYC driven transcriptional amplification and tumor progression in osteosarcoma. Bone Res. 6:112018. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Liu H, Wang Q, Zhou F, Liu Y, Zhang Y, Ding H, Yuan M, Li F and Chen Y: Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9. PLoS One. 12:e01805582017. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Guo Y, Xu D, Wang Y, Shen Y, Wang F, Lv Y, Song F, Jiang D, Zhang Y, et al: TRIM14 regulates cell proliferation and invasion in osteosarcoma via promotion of the AKT signaling pathway. Sci Rep. 7:424112017. View Article : Google Scholar : PubMed/NCBI | |
Nowacka-Zawisza M and Wiśnik E: DNA methylation and histone modifications as epigenetic regulation in prostate cancer. Oncol Rep. 38:2587–2596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, et al: Role of novel histone modifications in cancer. Oncotarget. 9:11414–11426. 2017.PubMed/NCBI | |
Sachdeva M, Dodd RD, Huang Z, Grenier C, Ma Y, Lev DC, Cardona DM, Murphy SK and Kirsch DG: Epigenetic silencing of Kruppel like factor-3 increases expression of pro-metastatic miR-182. Cancer Lett. 369:202–211. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kanherkar RR, Bhatia-Dey N and Csoka AB: Epigenetics across the human lifespan. Front Cell Dev Biol. 2:492014. View Article : Google Scholar : PubMed/NCBI | |
Sadikovic B, Yoshimoto M, Al-Romaih K, Maire G, Zielenska M and Squire JA: In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma. PLoS One. 3:e28342008. View Article : Google Scholar : PubMed/NCBI | |
Kresse SH, Rydbeck H, Skårn M, Namløs HM, Barragan-Polania AH, Cleton-Jansen AM, Serra M, Liestøl K, Hogendoorn PC, Hovig E, et al: Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma. PLoS ONE. 7:e482622012. View Article : Google Scholar : PubMed/NCBI | |
Rosenblum JM, Wijetunga NA, Fazzari MJ, Krailo M, Barkauskas DA, Gorlick R and Greally JM: Predictive properties of DNA methylation patterns in primary tumor samples for osteosarcoma relapse status. Epigenetics. 10:31–39. 2015. View Article : Google Scholar : PubMed/NCBI | |
Varshney J, Scott MC, Largaespada DA and Subramanian S: Understanding the osteosarcoma pathobiology-a comparative oncology approach. Vet Sci. 3(pii): E32016. View Article : Google Scholar : PubMed/NCBI | |
Jeziorska DM, Murray RJS, De Gobbi M, Gaentzsch R, Garrick D, Ayyub H, Chen T, Li E, Telenius J, Lynch M, et al: DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease. Proc Natl Acad Sci USA. 114:E7526–E7535. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li B and Ye Z: Epigenetic alterations in osteosarcoma: Promising targets. Mol Biol Rep. 41:3303–3315. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hamidi T, Singh AK and Chen T: Genetic alterations of DNA methylation machinery in human diseases. Epigenomics. 7:247–265. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li E and Zhang Y: DNA methylation in mammals. Cold Spring Harb Perspect Biol. 6:a0191332014. View Article : Google Scholar : PubMed/NCBI | |
Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE and Bestor TH: Methylation of tRNA Asp by the DNA methyltransferase homolog Dnmt2. Science. 311:395–398. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pfeifer GP: Defining driver DNA methylation changes in human cancer. Int J Mol Sci. 19(pii): E11662018. View Article : Google Scholar : PubMed/NCBI | |
Al-Romaih K, Sadikovic B, Yoshimoto M, Wang Y, Zielenska M and Squire JA: Decitabine-induced demethylation of 5′ CpG island in GADD45A leads to apoptosis in osteosarcoma cells. Neoplasia. 10:471–480. 2008. View Article : Google Scholar : PubMed/NCBI | |
Amente S, Zhang J, Lavadera ML, Lania L, Avvedimento EV and Majello B: Myc and PI3K/AKT signaling cooperatively repress FOXO3a-dependent PUMA and GADD45a gene expression. Nucleic Acids Res. 39:9498–9507. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, He J, Li J, Tian D, Gu L and Zhou M: Methylation of RASSF1A gene promoter is regulated by p53 and DAXX. FASEB J. 27:232–242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Song MS, Song SJ, Kim SY, Oh HJ and Lim DS: The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J. 27:1863–1874. 2008. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Liu W, Pan Y, Ni P, Ji J, Guo L, Zhang J, Wu J, Jiang J, Chen X, et al: Homeobox gene IRX1 is a tumor suppressor gene in gastric carcinoma. Oncogene. 29:3908–3920. 2010. View Article : Google Scholar : PubMed/NCBI | |
Moriarity BS, Otto GM, Rahrmann EP, Rathe SK, Wolf NK, Weg MT, Manlove LA, LaRue RS, Temiz NA, Molyneux SD, et al: A sleeping beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat Genet. 47:615–624. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Li D, Cai Z, Zhang Y, Huang Y, Su B and Ma R: An integrative analysis of DNA methylation in osteosarcoma. J Bone Oncol. 9:34–40. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lu H, Fan G, He M, Sun Y, Xu K and Shi F: A novel interplay between HOTAIR and DNA methylation in osteosarcoma cells indicates a new therapeutic strategy. J Cancer Res Clin Oncol. 143:2189–2200. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Q: CpG methylation patterns are associated with gene expression variation in osteosarcoma. Mol Med Rep. 16:901–907. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Li H, Zhao X, Wang B, Zhang L, Zhang C and Zhang F: DNA methylation mediated downregulation of miR-449c controls osteosarcoma cell cycle progression by directly targeting oncogene c-Myc. Int J Biol Sci. 13:1038–1050. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tian W, Li Y, Zhang J, Li J and Gao J: Combined analysis of DNA methylation and gene expression profiles of osteosarcoma identified several prognosis signatures. Gene. 650:7–14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bannister AJ and Kouzarides T: Regulation of chromatin by histone modifications. Cell Res. 21:381–395. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li S: Implication of posttranslational histone modifications in nucleotide excision repair. Int J Mol Sci. 13:12461–12486. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kelly TK, De Carvalho DD and Jones PA: Epigenetic modifications as therapeutic targets. Nat Biotechnol. 28:1069–1078. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ropero S and Esteller M: The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 1:19–25. 2007. View Article : Google Scholar : PubMed/NCBI | |
Black JC, Van Rechem C and Whetstine JR: Histone lysine methylation dynamics: Establishment, regulation, and biological impact. Mol Cell. 48:491–507. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vaidya H, Rumph C and Katula KS: Inactivation of the WNT5A alternative promoter B is associated with DNA methylation and histone modification in osteosarcoma cell lines U2OS and SaOS-2. PLoS One. 11:e01513922016. View Article : Google Scholar : PubMed/NCBI | |
He C, Sun J, Liu C, Jiang Y and Hao Y: Elevated H3K27me3 levels sensitize osteosarcoma to cisplatin. Clin Epigenetics. 11:82019. View Article : Google Scholar : PubMed/NCBI | |
Lawlor ER and Thiele CJ: pigenetic changes in pediatric solid tumors: Promising new targets. Clin Cancer Res. 18:2768–2779. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu SC and Benavente CA: Chromatin remodeling protein HELLS is upregulated by inactivation of the RB-E2F pathway and is nonessential for osteosarcoma tumorigenesis. Oncotarget. 9:32580–32592. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nie JH, Li TX, Zhang XQ and Liu J: Roles of non-coding RNAs in normal human brain development, brain tumor, and neuropsychiatric disorders. Noncoding RNA. 5(pii): E362019.PubMed/NCBI | |
Fernandes JCR, Acuña SM, Aoki JI, Floeter-Winter LM and Muxel SM: Long non-coding RNAs in the regulation of gene expression: Physiology and disease. Noncoding RNA. 5(pii): E172019.PubMed/NCBI | |
Calin GA: The noncoding RNA revolution-three decades and still going strong! Mol Oncol. 13(3)2019. | |
Patil VS, Zhou R and Rana TM: Gene regulation by non-coding RNAs. Crit Rev Biochem Mol Biol. 49:16–32. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mens MMJ and Ghanbari M: Cell cycle regulation of stem cells by microRNAs. Stem Cell Rev Rep. 14:309–322. 2018. View Article : Google Scholar : PubMed/NCBI | |
O'Brien J, Hayder H, Zayed Y and Peng C: Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zeng C, Tu M, Jiang W, Dai Z, Hu Y, Deng Z and Xiao W: MicroRNA-200b acts as a tumor suppressor in osteosarcoma via targeting ZEB1. Onco Targets Ther. 9:3101–3111. 2016.PubMed/NCBI | |
Jiang R, Zhang C, Liu G, Gu R and Wu H: MicroRNA-101 inhibits proliferation, migration and invasion in osteosarcoma cells by targeting ROCK1. Am J Cancer Res. 7:88–97. 2017.PubMed/NCBI | |
Xu H, Liu X and Zhao J: Down-regulation of miR-3928 promoted osteosarcoma growth. Cell Physiol Biochem. 33:1547–1556. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Nishimoto K, Zhou Z, Hughes D and Kleinerman ES: miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res. 72:908–916. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Liu X, Zhou J, Chen X and Zhao J: miR-574-3p acts as a tumor promoter in osteosarcoma by targeting SMAD4 signaling pathway. Oncol Lett. 12:5247–5253. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiao Q, Huang L, Zhang Z, Chen X, Luo J, Zhang Z, Chen S, Shu Y, Han Z and Cao K: Overexpression of miR-140 inhibits proliferation of osteosarcoma cells via suppression of histone deacetylase 4. Oncol Res. 25:267–275. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Liu M, Zhang H and Xia Y: Association of circulating miR-125b and survival in patients with osteosarcoma-A single center experience. J Bone Oncol. 5:167–172. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qu Y, Pan S, Kang M, Dong R and Zhao J: MicroRNA-150 functions as a tumor suppressor in osteosarcoma by targeting IGF2BP1. Tumour Biol. 37:5275–5284. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ali A, Hu L, Qian A, Chen C and Yang T: Long noncoding RNAs and human osteosarcoma. J Stem Cell Res Ther. 8:32018. View Article : Google Scholar | |
Guo W, Jiang H, Li H, Li F, Yu Q, Liu Y, Jiang W and Zhang M: LncRNA-SRA1 suppresses osteosarcoma cell proliferation while promoting cell apoptosis. Technol Cancer Res Treat. 18:1–11. 2019. View Article : Google Scholar | |
Deng R, Zhang J and Chen J: lncRNA SNHG1 negatively regulates miRNA-101-3p to enhance the expression of ROCK1 and promote cell proliferation, migration and invasion in osteosarcoma. Int J Mol Med. 43:1157–1166. 2019.PubMed/NCBI | |
Zhou Y, Yin L, Li H, Liu LH and Xiao T: The LncRNA LINC00963 facilitates osteosarcoma proliferation and invasion by suppressing miR-204-3p/FN1 axis. Cancer Biol Ther. 20:1141–1148. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Huang W, Sun W, Zheng B, Wang C, Luo Z, Wang J and Yan W: LncRNA MALAT1 promotes cancer metastasis in osteosarcoma via activation of the PI3K-Akt signaling pathway. Cell Physiol Biochem. 51:1313–1326. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gu W, Zhang E, Song L, Tu L, Wang Z, Tian F, Aikenmu K, Chu G and Zhao J: Long noncoding RNA HOXD-AS1 aggravates osteosarcoma carcinogenesis through epigenetically inhibiting p57 via EZH2. Biomed Pharmacother. 106:890–895. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Hu L, Li S, Shen J, Wang D, Xu R and Yang H: Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1α via miR-143-5p. Cell Death Dis. 10:2802019. View Article : Google Scholar : PubMed/NCBI | |
Kun-Peng Z, Xiao-Long M and Chun-Lin Z: Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 14:321–330. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al: The landscape of circular RNA in cancer. Cell. 176:869–881.e13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Ren M, Zhao X, Wang A and Wang J: Emerging roles of circular RNAs in osteosarcoma. Med Sci Monit. 24:7043–7050. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Xie Z, Chen J, Chen J, Ni W, Ma Y, Huang K, Wang G, Wang J, Ma J, et al: Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression. Mol Cancer. 18:732019. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Zhang J, Zou C, Xie X, Wang Y, Wang B, Zhao Z, Tu J, Wang X, Li H, et al: Microarray expression profile and functional analysis of circular RNAs in osteosarcoma. Cell Physiol Biochem. 43:969–985. 2017. View Article : Google Scholar : PubMed/NCBI | |
Goldszmid RS and Trinchieri G: The price of immunity. Nat Immunol. 13:932–938. 2012. View Article : Google Scholar : PubMed/NCBI | |
Turtle CJ, Hudecek M, Jensen MC and Riddell SR: Engineered T cells for anti-cancer therapy. Curr Opin Immunol. 24:633–639. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tu B, Du L, Fan QM, Tang Z and Tang TT: STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Lett. 325:80–88. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Yang W, Liu J and Zhang F: Interleukin-6 upregulates SOX18 expression in osteosarcoma. Onco Targets Ther. 10:5329–5336. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tzeng HE, Tsai CH, Chang ZL, Su CM, Wang SW, Hwang WL and Tang CH: Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma. Biochem Pharmacol. 85:531–540. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Zhou X, Huang D, Ji Y and Kang F: IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cell Physiol Biochem. 41:1360–1369. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gross AC, Cam H, Phelps DA, Saraf AJ, Bid HK, Cam M, London CA, Winget SA, Arnold MA, Brandolini L, et al: IL-6 and CXCL8 mediate osteosarcoma-lung interactions critical to metastasis. JCI Insight. 3(pii): 997912018. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wu H, Zheng J, Yu P, Xu L, Jiang P, Gao J, Wang H and Zhang Y: Transforming growth factor β1 signal is crucial for dedifferentiation of cancer cells to cancer stem cells in osteosarcoma. Stem Cells. 31:433–446. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lamora A, Talbot J, Mullard M, Brounais-Le Royer B, Redini F and Verrecchia F: TGF-β signaling in bone remodeling and osteosarcoma progression. J Clin Med. 5(pii): E962016. View Article : Google Scholar : PubMed/NCBI | |
Li F, Li S and Cheng T: TGF-β1 promotes osteosarcoma cell migration and invasion through the miR-143-versican pathway. Cell Physiol Biochem. 34:2169–2179. 2014. View Article : Google Scholar : PubMed/NCBI | |
Verrecchia F and Rédini F: Transforming growth factor-β signaling plays a pivotal role in the interplay between osteosarcoma cells and their microenvironment. Front Oncol. 8:1332018. View Article : Google Scholar : PubMed/NCBI | |
Lebrun JJ: The dual role of TGFβ in human cancer: From tumor suppression to cancer metastasis. ISRN Mol Biol. 2012:3814282012.PubMed/NCBI | |
Cantelli G, Crosas-Molist E, Georgouli M and Sanz-Moreno V: TGFΒ-induced transcription in cancer. Semin Cancer Biol. 42:60–69. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baglio SR, Lagerweij T, Pérez-Lanzón M, Ho XD, Léveillé N, Melo SA, Cleton-Jansen AM, Jordanova ES, Roncuzzi L, Greco M, et al: Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression. Clin Cancer Res. 23:3721–3733. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Wang D, Zhang L, Yang P, Wang J, Liu Q, Yan F and Lin F: The TGFβ-miR-499a-SHKBP1 pathway induces resistance to EGFR inhibitors in osteosarcoma cancer stem cell-like cells. J Exp Clin Cancer Res. 38:2262019. View Article : Google Scholar : PubMed/NCBI | |
Kato H, Wakabayashi H, Naito Y, Kato S, Nakagawa T, Matsumine A and Sudo A: Anti-tumor necrosis factor therapy inhibits lung metastasis in an osteosarcoma cell line. Oncology. 88:139–146. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa T, Shimizu T, Ueki A, Yamaguchi SI, Onishi N, Sugihara E, Kuninaka S, Miyamoto T, Morioka H, Nakayama R, et al: Twist2 functions as a tumor suppressor in murine osteosarcoma cells. Cancer Sci. 104:880–888. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, et al: Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science. 320:807–811. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, Barrow AD, Diamond MS and Colonna M: IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 13:753–760. 2012. View Article : Google Scholar : PubMed/NCBI | |
Foucher ED, Blanchard S, Preisser L, Garo E, Ifrah N, Guardiola P, Delneste Y and Jeannin P: IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages-Antagonistic effects of GM-CSF and IFNγ. PLoS One. 8:e560452013. View Article : Google Scholar : PubMed/NCBI | |
Ségaliny AI, Mohamadi A, Dizier B, Lokajczyk A, Brion R, Lanel R, Amiaud J, Charrier C, Boisson-Vidal C and Heymann D: Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int J Cancer. 137:73–85. 2015. View Article : Google Scholar : PubMed/NCBI | |
Honorati MC, Cattini L and Facchini A: Possible prognostic role of IL-17R in osteosarcoma. J Cancer Res Clin Oncol. 133:1017–1021. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Wang L, Ren T, Xu L and Wen Z: IL-17A/IL-17RA interaction promoted metastasis of osteosarcoma cells. Cancer Biol Ther. 14:155–163. 2013. View Article : Google Scholar : PubMed/NCBI |