The glycosylation landscape of pancreatic cancer (Review)
- Authors:
- Jennifer Munkley
-
Affiliations: Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK - Published online on: January 3, 2019 https://doi.org/10.3892/ol.2019.9885
- Pages: 2569-2575
-
Copyright: © Munkley . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Garrido-Laguna I and Hidalgo M: Pancreatic cancer: From state-of-the-art treatments to promising novel therapies. Nat Rev Clin Oncol. 12:319–334. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maitra A and Hruban RH: Pancreatic cancer. Annu Rev Pathol. 3:157–188. 2008. View Article : Google Scholar : PubMed/NCBI | |
Klöppel G and Adsay NV: Chronic pancreatitis and the differential diagnosis versus pancreatic cancer. Arch Pathol Lab Med. 133:382–387. 2009.PubMed/NCBI | |
Meezan E, Wu HC, Black PH and Robbins PW: Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by sephadex chromatography. Biochemistry. 8:2518–2524. 1969. View Article : Google Scholar : PubMed/NCBI | |
Munkley J and Elliott DJ: Hallmarks of glycosylation in cancer. Oncotarget. 7:35478–35489. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feizi T: Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature. 314:53–57. 1985. View Article : Google Scholar : PubMed/NCBI | |
Pinho SS and Reis CA: Glycosylation in cancer: Mechanisms and clinical implications. Nat Rev Cancer. 15:540–555. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kailemia MJ, Park D and Lebrilla CB: Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 409:395–410. 2017. View Article : Google Scholar : PubMed/NCBI | |
Munkley J: Glycosylation is a global target for androgen control in prostate cancer cells. Endocr Relat Cancer. 24:R49–R64. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mereiter S, Balmaña M, Gomes J, Magalhães A and Reis CA: Glycomic approaches for the discovery of targets in gastrointestinal cancer. Front Oncol. 6:552016. View Article : Google Scholar : PubMed/NCBI | |
Adamczyk B, Tharmalingam T and Rudd PM: Glycans as cancer biomarkers. Biochim Biophys Acta. 1820:1347–1353. 2012. View Article : Google Scholar : PubMed/NCBI | |
Munkley J, Vodak D, Livermore KE, James K, Wilson BT, Knight B, Mccullagh P, Mcgrath J, Crundwell M, Harries LW, et al: Glycosylation is an androgen-regulated process essential for prostate cancer cell viability. EBioMedicine. 8:103–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
Munkley J, Mills IG and Elliott DJ: The role of glycans in the development and progression of prostate cancer. Nat Rev Urol. 13:324–333. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moniaux N, Andrianifahanana M, Brand RE and Batra SK: Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. Br J Cancer. 91:1633–1638. 2004. View Article : Google Scholar : PubMed/NCBI | |
Magnani JL, Nilsson B, Brockhaus M, Zopf D, Steplewski Z, Koprowski H and Ginsburg V: A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem. 257:14365–14369. 1982.PubMed/NCBI | |
Magnani JL, Brockhaus M, Smith DF, Ginsburg V, Blaszczyk M, Mitchell KF, Steplewski Z and Koprowski H: A monosialoganglioside is a monoclonal antibody-defined antigen of colon carcinoma. Science. 212:55–56. 1981. View Article : Google Scholar : PubMed/NCBI | |
Herlyn M, Sears HF, Steplewski Z and Koprowski H: Monoclonal antibody detection of a circulating tumor-associated antigen. I. Presence of antigen in sera of patients with colorectal, gastric, and pancreatic carcinoma. J Clin Immunol. 2:135–140. 1982. View Article : Google Scholar : PubMed/NCBI | |
Magnani JL, Steplewski Z, Koprowski H and Ginsburg V: Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res. 43:5489–5492. 1983.PubMed/NCBI | |
Yue T, Partyka K, Maupin KA, Hurley M, Andrews P, Kaul K, Moser AJ, Zeh H, Brand RE and Haab BB: Identification of blood-protein carriers of the CA 19-9 antigen and characterization of prevalence in pancreatic diseases. Proteomics. 11:3665–3674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lahdenne P, Pitkänen S, Rajantie J, Kuusela P, Siimes MA, Lanning M and Heikinheimo M: Tumor markers CA 125 and CA 19-9 in cord blood and during infancy: Developmental changes and use in pediatric germ cell tumors. Pediatr Res. 38:797–801. 1995. View Article : Google Scholar : PubMed/NCBI | |
Goonetilleke KS and Siriwardena AK: Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol. 33:266–270. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kalthoff H, Kreiker C, Schmiegel WH, Greten H and Thiele HG: Characterization of CA 19-9 bearing mucins as physiological exocrine pancreatic secretion products. Cancer Res. 46:3605–3607. 1986.PubMed/NCBI | |
Tang H, Hsueh P, Kletter D, Bern M and Haab B: The detection and discovery of glycan motifs in biological samples using lectins and antibodies: New methods and opportunities. Adv Cancer Res. 126:167–202. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shah UA and Saif MW: Tumor markers in pancreatic cancer: 2013. JOP. 14:318–321. 2013.PubMed/NCBI | |
Barton JG, Bois JP, Sarr MG, Wood CM, Qin R, Thomsen KM, Kendrick ML and Farnell MB: Predictive and prognostic value of CA 19-9 in resected pancreatic adenocarcinoma. J Gastrointest Surg. 13:2050–2058. 2009. View Article : Google Scholar : PubMed/NCBI | |
Galli C, Basso D and Plebani M: CA 19-9: Handle with care. Clin Chem Lab Med. 51:1369–1383. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yue T, Maupin KA, Fallon B, Li L, Partyka K, Anderson MA, Brenner DE, Kaul K, Zeh H, Moser AJ, et al: Enhanced discrimination of malignant from benign pancreatic disease by measuring the CA 19-9 antigen on specific protein carriers. PLoS One. 6:e291802011. View Article : Google Scholar : PubMed/NCBI | |
Tempero MA, Uchida E, Takasaki H, Burnett DA, Steplewski Z and Pour PM: Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreatic cancer. Cancer Res. 47:5501–5503. 1987.PubMed/NCBI | |
Remmers N, Anderson JM, Linde EM, DiMaio DJ, Lazenby AJ, Wandall HH, Mandel U, Clausen H, Yu F and Hollingsworth MA: Aberrant expression of mucin core proteins and o-linked glycans associated with progression of pancreatic cancer. Clin Cancer Res. 19:1981–1993. 2013. View Article : Google Scholar : PubMed/NCBI | |
Partyka K, Maupin KA, Brand RE and Haab BB: Diverse monoclonal antibodies against the CA 19-9 antigen show variation in binding specificity with consequences for clinical interpretation. Proteomics. 12:2212–2220. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Partyka K, Hsueh P, Sinha JY, Kletter D, Zeh H, Huang Y, Brand RE and Haab BB: Glycans related to the CA19-9 antigen are elevated in distinct subsets of pancreatic cancers and improve diagnostic accuracy over CA19-9. Cell Mol Gastroenterol Hepatol. 2:201–221.e215. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu HL, Zhao X, Zhang KM, Tang W and Kokudo N: Inhibition of KL-6/MUC1 glycosylation limits aggressive progression of pancreatic cancer. World J Gastroenterol. 20:12171–12181. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pour PM, Tempero MM, Takasaki H, Uchida E, Takiyama Y, Burnett DA and Steplewski Z: Expression of blood group-related antigens ABH, Lewis A, Lewis B, Lewis X, Lewis Y and CA 19-9 in pancreatic cancer cells in comparison with the patient's blood group type. Cancer Res. 48:5422–5426. 1988.PubMed/NCBI | |
Singh S, Pal K, Yadav J, Tang H, Partyka K, Kletter D, Hsueh P, Ensink E, Kc B, Hostetter G, et al: Upregulation of glycans containing 3′ fucose in a subset of pancreatic cancers uncovered using fusion-tagged lectins. J Proteome Res. 14:2594–2605. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Singh S, Partyka K, Kletter D, Hsueh P, Yadav J, Ensink E, Bern M, Hostetter G, Hartman D, et al: Glycan motif profiling reveals plasma sialyl-lewis × elevations in pancreatic cancers that are negative for sialyl-lewis A. Mol Cell Proteomics. 14:1323–1333. 2015. View Article : Google Scholar : PubMed/NCBI | |
Balmaña M, Sarrats A, Llop E, Barrabés S, Saldova R, Ferri MJ, Figueras J, Fort E, de Llorens R, Rudd PM and Peracaula R: Identification of potential pancreatic cancer serum markers: Increased sialyl-Lewis X on ceruloplasmin. Clin Chim Acta. 442:56–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Natoni A, Macauley MS and O'Dwyer ME: Targeting selectins and their ligands in cancer. Front Oncol. 6:932016. View Article : Google Scholar : PubMed/NCBI | |
Takahashi S, Oda T, Hasebe T, Sasaki S, Kinoshita T, Konishi M, Ueda T, Nakahashi C, Ochiai T and Ochiai A: Overexpression of sialyl Lewis × antigen is associated with formation of extratumoral venous invasion and predicts postoperative development of massive hepatic metastasis in cases with pancreatic ductal adenocarcinoma. Pathobiology. 69:127–135. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rho JH, Mead JR, Wright WS, Brenner DE, Stave JW, Gildersleeve JC and Lampe PD: Discovery of sialyl Lewis A and Lewis X modified protein cancer biomarkers using high density antibody arrays. J Proteomics. 96:291–299. 2014. View Article : Google Scholar : PubMed/NCBI | |
Metzgar RS, Gaillard MT, Levine SJ, Tuck FL, Bossen EH and Borowitz MJ: Antigens of human pancreatic adenocarcinoma cells defined by murine monoclonal antibodies. Cancer Res. 42:601–608. 1982.PubMed/NCBI | |
Kawa S, Tokoo M, Oguchi H, Furuta S, Homma T, Hasegawa Y, Ogata H and Sakata K: Epitope analysis of SPan-1 and DUPAN-2 using synthesized glycoconjugates sialyllact-N-fucopentaose II and sialyllact-N-tetraose. Pancreas. 9:692–697. 1994. View Article : Google Scholar : PubMed/NCBI | |
Munkley J: The role of Sialyl-Tn in cancer. Int J Mol Sci. 17:2752016. View Article : Google Scholar : PubMed/NCBI | |
Radhakrishnan P, Dabelsteen S, Madsen FB, Francavilla C, Kopp KL, Steentoft C, Vakhrushev SY, Olsen JV, Hansen L, Bennett EP, et al: Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc Natl Acad Sci USA. 111:E4066–E4075. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hofmann BT, Schlüter L, Lange P, Mercanoglu B, Ewald F, Fölster A, Picksak AS, Harder S, El Gammal AT, Grupp K, et al: COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties in pancreatic cancer. Mol Cancer. 14:1092015. View Article : Google Scholar : PubMed/NCBI | |
Itzkowitz S, Kjeldsen T, Friera A, Hakomori S, Yang US and Kim YS: Expression of Tn, sialosyl Tn, and T antigens in human pancreas. Gastroenterology. 100:1691–1700. 1991. View Article : Google Scholar : PubMed/NCBI | |
Chugh S, Meza J, Sheinin YM, Ponnusamy MP and Batra SK: Loss of N-acetylgalactosaminyltransferase 3 in poorly differentiated pancreatic cancer: Augmented aggressiveness and aberrant ErbB family glycosylation. Br J Cancer. 114:1376–1386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ju T, Ding X, Xia B, Wang W, Xia L, He M and Cummings RD: Cosmc is an essential chaperone for correct protein O-glycosylation. Proc Natl Acad Sci USA. 107:9228–9233. 2010. View Article : Google Scholar : PubMed/NCBI | |
Taniuchi K, Cerny RL, Tanouchi A, Kohno K, Kotani N, Honke K, Saibara T and Hollingsworth MA: Overexpression of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell growth. Oncogene. 30:4843–4854. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pan S, Tamura Y, Chen R, May D, McIntosh MW and Brentnall TA: Large-scale quantitative glycoproteomics analysis of site-specific glycosylation occupancy. Mol Biosyst. 8:2850–2856. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pan S, Chen R, Tamura Y, Crispin DA, Lai LA, May DH, McIntosh MW, Goodlett DR and Brentnall TA: Quantitative glycoproteomics analysis reveals changes in N-glycosylation level associated with pancreatic ductal adenocarcinoma. J Proteome Res. 13:1293–1306. 2014. View Article : Google Scholar : PubMed/NCBI | |
Contessa JN, Bhojani MS, Freeze HH, Rehemtulla A and Lawrence TS: Inhibition of N-linked glycosylation disrupts receptor tyrosine kinase signaling in tumor cells. Cancer Res. 68:3803–3809. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Garay M, Arteta B, Llop E, Cobler L, Pagès L, Ortiz R, Ferri MJ, de Bolós C, Figueras J, de Llorens R, et al: α2,3-Sialyltransferase ST3Gal IV promotes migration and metastasis in pancreatic adenocarcinoma cells and tends to be highly expressed in pancreatic adenocarcinoma tissues. Int J Biochem Cell Biol. 45:1748–1757. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Garay M, Arteta B, Pagès L, de Llorens R, de Bolòs C, Vidal-Vanaclocha F and Peracaula R: alpha2,3-sialyltransferase ST3Gal III modulates pancreatic cancer cell motility and adhesion in vitro and enhances its metastatic potential in vivo. PLoS One. 5(pii): e125242010. View Article : Google Scholar : PubMed/NCBI | |
Hsieh CC, Shyr YM, Liao WY, Chen TH, Wang SE, Lu PC, Lin PY, Chen YB, Mao WY, Han HY, et al: Elevation of β-galactoside α2,6-sialyltransferase 1 in a fructoseresponsive manner promotes pancreatic cancer metastasis. Oncotarget. 8:7691–7709. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yue T, Goldstein IJ, Hollingsworth MA, Kaul K, Brand RE and Haab BB: The prevalence and nature of glycan alterations on specific proteins in pancreatic cancer patients revealed using antibody-lectin sandwich arrays. Mol Cell Proteomics. 8:1697–1707. 2009. View Article : Google Scholar : PubMed/NCBI | |
Park HM, Hwang MP, Kim YW, Kim KJ, Jin JM, Kim YH, Yang YH, Lee KH and Kim YG: Mass spectrometry-based N-linked glycomic profiling as a means for tracking pancreatic cancer metastasis. Carbohydr Res. 413:5–11. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Qiu W, Simeone DM and Lubman DM: N-linked glycosylation profiling of pancreatic cancer serum using capillary liquid phase separation coupled with mass spectrometric analysis. J Proteome Res. 6:1126–1138. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kamada Y, Kinoshita N, Tsuchiya Y, Kobayashi K, Fujii H, Terao N, Kamihagi K, Koyama N, Yamada S, Daigo Y, et al: Reevaluation of a lectin antibody ELISA kit for measuring fucosylated haptoglobin in various conditions. Clin Chim Acta. 417:48–53. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barrabés S, Pagès-Pons L, Radcliffe CM, Tabarés G, Fort E, Royle L, Harvey DJ, Moenner M, Dwek RA, Rudd PM, et al: Glycosylation of serum ribonuclease 1 indicates a major endothelial origin and reveals an increase in core fucosylation in pancreatic cancer. Glycobiology. 17:388–400. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fardini Y, Dehennaut V, Lefebvre T and Issad T: O-GlcNAcylation: A new cancer hallmark? Front Endocrinol (Lausanne). 4(99)2013.PubMed/NCBI | |
Bond MR and Hanover JA: A little sugar goes a long way: The cell biology of O-GlcNAc. J Cell Biol. 208:869–880. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Cao Y, Pan X, Shi M, Wu Q, Huang T, Jiang H, Li W and Zhang J: O-GlcNAc elevation through activation of the hexosamine biosynthetic pathway enhances cancer cell chemoresistance. Cell Death Dis. 9:4852018. View Article : Google Scholar : PubMed/NCBI | |
Qian K, Wang S, Fu M, Zhou J, Singh JP, Li MD, Yang Y, Zhang K, Wu J, Nie Y, et al: Transcriptional regulation of O-GlcNAc homeostasis is disrupted in pancreatic cancer. J Biol Chem. 293:13989–14000. 2018. View Article : Google Scholar : PubMed/NCBI | |
Konrad RJ and Kudlow JE: The role of O-linked protein glycosylation in beta-cell dysfunction. Int J Mol Med. 10:535–539. 2002.PubMed/NCBI | |
Ma Z, Vocadlo DJ and Vosseller K: Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-κB activity in pancreatic cancer cells. J Biol Chem. 288:15121–15130. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zachara NE, O'Donnell N, Cheung WD, Mercer JJ, Marth JD and Hart GW: Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem. 279:30133–30142. 2004. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Sangwan V, McGinn O, Chugh R, Dudeja V, Vickers SM and Saluja AK: Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1. J Biol Chem. 288:33927–33938. 2013. View Article : Google Scholar : PubMed/NCBI | |
Garg B, Giri B, Majumder K, Dudeja V, Banerjee S and Saluja A: Modulation of post-translational modifications in β-catenin and LRP6 inhibits Wnt signaling pathway in pancreatic cancer. Cancer Lett. 388:64–72. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sharma NS, Gupta VK, Dauer P, Kesh K, Hadad R, Giri B, Chandra A, Dudeja V, Slawson C, Banerjee S, et al: O-GlcNAc modification of oncogenic transcription factor Sox2 promotes protein stability and regulates self-renewal in pancreatic cancer. bioRxiv. doi: https://doi.org/10.1101/345223. | |
Dwek RA, Butters TD, Platt FM and Zitzmann N: Targeting glycosylation as a therapeutic approach. Nat Rev Drug Discov. 1:65–75. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vasconcelos-Dos-Santos A, Oliveira IA, Lucena MC, Mantuano NR, Whelan SA, Dias WB and Todeschini AR: Biosynthetic machinery involved in aberrant glycosylation: Promising targets for developing of drugs against cancer. Front Oncol. 5:1382015. View Article : Google Scholar : PubMed/NCBI | |
Iozzo RV and Sanderson RD: Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med. 15:1013–1031. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pan S, Chen R, Stevens T, Bronner MP, May D, Tamura Y, McIntosh MW and Brentnall TA: Proteomics portrait of archival lesions of chronic pancreatitis. PLoS One. 6:e275742011. View Article : Google Scholar : PubMed/NCBI | |
Pan S, Chen R, Reimel BA, Crispin DA, Mirzaei H, Cooke K, Coleman JF, Lane Z, Bronner MP, Goodlett DR, et al: Quantitative proteomics investigation of pancreatic intraepithelial neoplasia. Electrophoresis. 30:1132–1144. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Yi EC, Donohoe S, Pan S, Eng J, Cooke K, Crispin DA, Lane Z, Goodlett DR, Bronner MP, et al: Pancreatic cancer proteome: The proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology. 129:1187–1197. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen WB, Lenschow W, Tiede K, Fischer JW, Kalthoff H and Ungefroren H: Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-beta in pancreatic tumor cells. J Biol Chem. 277:36118–36128. 2002. View Article : Google Scholar : PubMed/NCBI | |
Koninger J, Giese T, di Mola FF, Wente MN, Esposito I, Bachem MG, Giese NA, Büchler MW and Friess H: Pancreatic tumor cells influence the composition of the extracellular matrix. Biochem Biophys Res Commun. 322:943–949. 2004. View Article : Google Scholar : PubMed/NCBI | |
Koninger J, Giese NA, di Mola FF, Berberat P, Giese T, Esposito I, Bachem MG, Büchler MW and Friess H: Overexpressed decorin in pancreatic cancer: Potential tumor growth inhibition and attenuation of chemotherapeutic action. Clin Cancer Res. 10:4776–4783. 2004. View Article : Google Scholar : PubMed/NCBI | |
Weber CK, Sommer G, Michl P, Fensterer H, Weimer M, Gansauge F, Leder G, Adler G and Gress TM: Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Gastroenterology. 121:657–667. 2001. View Article : Google Scholar : PubMed/NCBI | |
Conejo JR, Kleeff J, Koliopanos A, Matsuda K, Zhu ZW, Goecke H, Bicheng N, Zimmermann A, Korc M, Friess H and Büchler MW: Syndecan-1 expression is up-regulated in pancreatic but not in other gastrointestinal cancers. Int J Cancer. 88:12–20. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kleeff J, Ishiwata T, Kumbasar A, Friess H, Büchler MW, Lander AD and Korc M: The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest. 102:1662–1673. 1998. View Article : Google Scholar : PubMed/NCBI | |
Whipple CA, Young AL and Korc M: A KrasG12D-driven genetic mouse model of pancreatic cancer requires glypican-1 for efficient proliferation and angiogenesis. Oncogene. 31:2535–2544. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aikawa T, Whipple CA, Lopez ME, Gunn J, Young A, Lander AD and Korc M: Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J Clin Invest. 118:89–99. 2008. View Article : Google Scholar : PubMed/NCBI | |
Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, et al: Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 523:177–182. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ebrahim AH, Alalawi Z, Mirandola L, Rakhshanda R, Dahlbeck S, Nguyen D, Jenkins M, Grizzi F, Cobos E, Figueroa JA, et al: Galectins in cancer: Carcinogenesis, diagnosis and therapy. Ann Transl Med. 2:882014.PubMed/NCBI | |
Qian D, Lu Z, Xu Q, Wu P, Tian L, Zhao L, Cai B, Yin J, Wu Y, Staveley-O'Carroll KF, et al: Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cells promotes pancreatic cancer metastasis. Cancer Lett. 397:43–51. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Ajani JA, Sushovan G, Ochi N, Hwang R, Hafley M, Johnson RL, Bresalier RS, Logsdon CD, Zhang Z and Song S: Galectin-3 mediates tumor cell-stroma interactions by activating pancreatic stellate cells to produce cytokines via integrin signaling. Gastroenterology. 154:1524–1537.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Pan S, Ottenhof NA, de Wilde RF, Wolfgang CL, Lane Z, Post J, Bronner MP, Willmann JK, Maitra A and Brentnall TA: Stromal galectin-1 expression is associated with long-term survival in resectable pancreatic ductal adenocarcinoma. Cancer Biol Ther. 13:899–907. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Dawson DW, Pan S, Ottenhof NA, de Wilde RF, Wolfgang CL, May DH, Crispin DA, Lai LA, Lay AR, et al: Proteins associated with pancreatic cancer survival in patients with resectable pancreatic ductal adenocarcinoma. Lab Invest. 95:43–55. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Bosch N, Fernández-Barrena MG, Moreno M, Ortiz-Zapater E, Munné-Collado J, Iglesias M, André S, Gabius HJ, Hwang RF, Poirier F, et al: Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation. Cancer Res. 74:3512–3524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Orozco CA, Martinez-Bosch N, Guerrero PE, Vinaixa J, Dalotto-Moreno T, Iglesias M, Moreno M, Djurec M, Poirier F, Gabius HJ, et al: Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc Natl Acad Sci USA. 115:E3769–E3778. 2018. View Article : Google Scholar : PubMed/NCBI | |
Seguin L, Camargo MF, Wettersten HI, Kato S, Desgrosellier JS, von Schalscha T, Elliott KC, Cosset E, Lesperance J, Weis SM and Cheresh DA: Galectin-3, a druggable vulnerability for KRAS-addicted cancers. Cancer Discov. 7:1464–1479. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, et al: Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 531:47–52. 2016. View Article : Google Scholar : PubMed/NCBI |