1
|
Gluenz E, Höög JL, Smith AE, Dawe HR, Shaw
MK and Gull K: Beyond 9+0: Noncanonical axoneme structures
characterize sensory cilia from protists to humans. FASEB J.
24:3117–3121. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lattao R, Kovács L and Glover DM: The
centrioles, centrosomes, basal bodies, and cilia of drosophila
melanogaster. Genetics. 206:33–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Archer FL and Wheatley DN: Cilia in
cell-cultured fibroblasts. II. Incidence in mitotic and
post-mitotic BHK 21-C13 fibroblasts. J Anat. 109:277–292.
1971.PubMed/NCBI
|
4
|
Goto H, Inoko A and Inagaki M: Cell cycle
progression by the repression of primary cilia formation in
proliferating cells. Cell Mol Life Sci. 70:3893–3905. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Pugacheva EN, Jablonski SA, Hartman TR,
Henske EP and Golemis EA: HEF1-dependent Aurora A activation
induces disassembly of the primary cilium. Cell. 129:1351–1363.
2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cole DG, Diener DR, Himelblau AL, Beech
PL, Fuster JC and Rosenbaum JL: Chlamydomonas kinesin-II-dependent
intraflagellar transport (IFT): IFT particles contain proteins
required for ciliary assembly in Caenorhabditis elegans sensory
neurons. J Cell Biol. 141:993–1008. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lechtreck KF: IFT-cargo interactions and
protein transport in cilia. Trends Biochem Sci. 40:765–778. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Lancaster MA and Gleeson JG: The primary
cilium as a cellular signaling center: Lessons from disease. Curr
opin in Genet Dev. 19:220–229. 2009. View Article : Google Scholar
|
9
|
Grisanti L, Revenkova E, Gordon RE and
Iomini C: Primary cilia maintain corneal epithelial homeostasis by
regulation of the Notch signaling pathway. Development.
143:2160–2171. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rohatgi R, Milenkovic L and Scott MP:
Patched1 regulates hedgehog signaling at the primary cilium.
Science. 317:372–376. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
May-Simera HL and Kelley MW: Cilia, Wnt
signaling, and the cytoskeleton. Cilia. 1:72012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Corbit KC, Shyer AE, Dowdle WE, Gaulden J,
Singla V, Chen MH, Chuang PT and Reiter JF: Kif3a constrains
beta-catenin-dependent Wnt signalling through dual ciliary and
non-ciliary mechanisms. Nat Cell Biol. 10:70–76. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wong SY, Seol AD, So PL, Ermilov AN,
Bichakjian CK, Epstein EH Jr, Dlugosz AA and Reiter JF: Primary
cilia can both mediate and suppress Hedgehog pathway-dependent
tumorigenesis. Nat Med. 15:1055–1061. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Corbit KC, Aanstad P, Singla V, Norman AR,
Stainier DY and Reiter JF: Vertebrate smoothened functions at the
primary cilium. Nature. 437:1018–1021. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nozawa YI, Lin C and Chuang PT: Hedgehog
signaling from the primary cilium to the nucleus: An emerging
picture of ciliary localization, trafficking and transduction. Curr
Opin Genet Dev. 23:429–437. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ezratty EJ, Stokes N, Chai S, Shah AS,
Williams SE and Fuchs E: A role for the primary cilium in Notch
signaling and epidermal differentiation during skin development.
Cell. 145:1129–1141. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vladar EK, Antic D and Axelrod JD: Planar
cell polarity signaling: The developing cell's compass. Cold Spring
Harb Perspect Bio. 1:a0029642009.
|
18
|
Patel V, Li L, Cobo-Stark P, Shao X, Somlo
S, Lin F and Igarashi P: Acute kidney injury and aberrant planar
cell polarity induce cyst formation in mice lacking renal cilia.
Hum Mol Genet. 17:1578–1590. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tan AY, Blumenfeld J, Michaeel A, Donahue
S, Bobb W, Parker T, Levine D and Rennert H: Autosomal dominant
polycystic kidney disease caused by somatic and germline mosaicism.
Clin Genet. 87:373–377. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hajj P, Ferlicot S, Massoud W, Awad A,
Hammoudi Y, Charpentier B, Durrbach A, Droupy S and Benoît G:
Prevalence of renal cell carcinoma in patients with autosomal
dominant polycystic kidney disease and chronic renal failure.
Urology. 74:631–634. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yoder BK, Hou X and Guay-Woodford LM: The
polycystic kidney disease proteins, polycystin-1, polycystin-2,
polaris, and cystin, are co-localized in renal cilia. J Am Soc
Nephrol. 13:2508–2516. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tory K, Lacoste T, Burglen L, Morinière V,
Boddaert N, Macher MA, Llanas B, Nivet H, Bensman A, Niaudet P, et
al: High NPHP1 and NPHP6 mutation rate in patients with Joubert
syndrome and nephronophthisis: Potential epistatic effect of NPHP6
and AHI1 mutations in patients with NPHP1 mutations. J Am Soc
Nephrol. 18:1566–1575. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Forsythe E and Beales PL: Bardet-Biedl
syndrome. Eur J Hum Genet. 21:8–13. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Waters AM and Beales PL: Ciliopathies: An
expanding disease spectrum. Pediatr Nephrol. 26:1039–1056. 2010.
View Article : Google Scholar
|
25
|
Cortes CR, Metzis V and Wicking C:
Unmasking the ciliopathies: Craniofacial defects and the primary
cilium. Wiley Interdiscip Rev Dev Biol. 4:637–653. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jones C and Chen P: Primary cilia in
planar cell polarity regulation of the inner ear. Curr Top Dev
Biol. 85:197–224. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pazour GJ, Dickert BL, Vucica Y, Seeley
ES, Rosenbaum JL, Witman GB and Cole DG: Chlamydomonas IFT88 and
its mouse homologue, polycystic kidney disease gene tg737, are
required for assembly of cilia and flagella. J Cell Biol.
151:709–718. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Robert A, Margall-Ducos G, Guidotti JE,
Brégerie O, Celati C, Bréchot C and Desdouets C: The intraflagellar
transport component IFT88/polaris is a centrosomal protein
regulating G1-S transition in non-ciliated cells. J Cell Sci.
120:628–637. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Inaba H, Goto H, Kasahara K, Kumamoto K,
Yonemura S, Inoko A, Yamano S, Wanibuchi H, He D, Goshima N, et al:
Ndel1 suppresses ciliogenesis in proliferating cells by regulating
the trichoplein-Aurora A pathway. J Cell Biol. 212:409–423. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Maskey D, Marlin MC, Kim S, Kim S, Ong EC,
Li G and Tsiokas L: Cell cycle-dependent ubiquitylation and
destruction of NDE1 by CDK5-FBW7 regulates ciliary length. EMBO J.
34:2424–2440. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim S, Zaghloul NA, Bubenshchikova E, Oh
EC, Rankin S, Katsanis N, Obara T and Tsiokas L: Nde1-mediated
inhibition of ciliogenesis affects cell cycle re-entry. Nat Cell
Biol. 13:351–360. 2011. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Seeley ES, Carrière C, Goetze T,
Longnecker DS and Korc M: Pancreatic cancer and precursor
pancreatic intraepithelial neoplasia lesions are devoid of primary
cilia. Cancer Res. 69:422–430. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Basten SG, Willekers S, Vermaat JS, Slaats
GG, Voest EE, van Diest PJ and Giles RH: Reduced cilia frequencies
in human renal cell carcinomas versus neighboring parenchymal
tissue. Cilia. 2:22013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Arjumand W and Sultana S: Role of VHL gene
mutation in human renal cell carcinoma. Tumor Biol. 33:9–16. 2012.
View Article : Google Scholar
|
35
|
Esteban MA, Harten SK, Tran MG and Maxwell
PH: Formation of primary cilia in the renal epithelium is regulated
by the von Hippel-Lindau tumor suppressor protein. J Am Soc
Nephrol. 17:1801–1806. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Snedecor ER, Sung CC, Moncayo A, Rothstein
BE, Mockler DC, Tonnesen MG, Jones EC, Fujita M, Clark RA, Shroyer
KR and Chen J: Loss of primary cilia in melanoma cells is likely
independent of proliferation and cell cycle progression. J Invest
Dermatol. 135:1456–1458. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chefetz I, Holmberg JC, Alvero AB,
Visintin I and Mor G: Inhibition of Aurora-A kinase induces cell
cycle arrest in epithelial ovarian cancer stem cells by affecting
NFkB pathway. Cell Cycle. 10:2206–2214. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Egeberg DL, Lethan M, Manguso R, Schneider
L, Awan A, Jørgensen TS, Byskov AG, Pedersen LB and Christensen ST:
Primary cilia and aberrant cell signaling in epithelial ovarian
cancer. Cilia. 1:152012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Emoto K, Masugi Y, Yamazaki K, Effendi K,
Tsujikawa H, Tanabe M, Kitagawa Y and Sakamoto M: Presence of
primary cilia in cancer cells correlates with prognosis of
pancreatic ductal adenocarcinoma. Hum Pathol. 45:817–825. 2013.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Yuan K, Frolova N, Xie Y, Wang D, Cook L,
Kwon YJ, Steg AD, Serra R and Frost AR: Primary cilia are decreased
in breast cancer: Analysis of a collection of human breast cancer
cell lines and tissues. J Histochem Cytochem. 58:857–870. 2010.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Dhillon AS, Hagan S, Rath O and Kolch W:
MAP Kinase signaling pathways in cancer. Oncogene. 26:3279–3290.
2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Burotto M, Chiou VL, Lee JM and Kohn EC:
The MAPK pathway across different malignancies: A new perspective.
Cancer. 120:3446–3456. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Deschenes-Simard X, Gaumont-Leclerc MF,
Bourdeau V, Lessard F, Moiseeva O, Forest V, Igelmann S, Mallette
FA, Saba-El-Leil MK, Meloche S, et al: Tumor suppressor activity of
the ERK/MAPK pathway by promoting selective protein degradation.
Genes Dev. 27:900–915. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wagner EF and Nebreda AR: Signal
integration by JNK and p38 MAPK pathways in cancer development. Nat
Rev Cancer. 9:537–549. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sanchez-Perez I, Murguia JR and Perona R:
Cisplatin induces a persistent activation of JNK that is related to
cell death. Oncogene. 16:533–540. 1998. View Article : Google Scholar : PubMed/NCBI
|
46
|
Dhanasekaran DN and Reddy EP: JNK
signaling in apoptosis. Oncogene. 27:6245–6251. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Chen N, She QB, Bode AM and Dong Z:
Differential gene expression profiles of Jnk1- and Jnk2-deficient
murine fibroblast cells. Cancer Res. 62:1300–1304. 2002.PubMed/NCBI
|
48
|
Radford R, Slattery C, Jennings P, Blacque
O, Pfaller W, Gmuender H, Van Delft J, Ryan MP and McMorrow T:
Carcinogens induce loss of the primary cilium in human renal
proximal tubular epithelial cells independently of effects on the
cell cycle. Am J Physiol Renal Physiol. 302:F905–F916. 2012.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang SX, Wei Q, Dong G and Dong Z:
ERK-mediated suppression of cilia in cisplatin-induced tubular cell
apoptosis and acute kidney injury. Biochim Biophys Act.
1832:1582–1590. 2013. View Article : Google Scholar
|
50
|
Kim JI, Kim J, Jang HS, Noh MR, Lipschutz
JH and Park KM: Reduction of oxidative stress during recovery
accelerates normalization of primary cilia length that is altered
after ischemic injury in murine kidneys. Am J Physiol Renal
Physiol. 304:F1283–F1294. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Schneider L, Clement CA, Teilmann SC,
Pazour GJ, Hoffmann EK, Satir P and Christensen ST: PDGFRalphaalpha
signaling is regulated through the primary cilium in fibroblasts.
Curr Biol. 15:1861–1866. 2005. View Article : Google Scholar : PubMed/NCBI
|
52
|
Goetz SC, Ocbina PJ and Anderson KV: The
primary cilium as a Hedgehog signal transduction machine. Methods
cell biol. 94:199–222. 2009. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hassounah NB, Bunch TA and McDermott KM:
Molecular pathways: The role of primary cilia in cancer progression
and therapeutics with a focus on Hedgehog signaling. Clin Cancer
Res. 18:2429–2435. 2012. View Article : Google Scholar : PubMed/NCBI
|
54
|
Han YG, Kim HJ, Dlugosz AA, Ellison DW,
Gilbertson RJ and Alvarez-Buylla A: Dual and opposing roles of
primary cilia in medulloblastoma development. Nat Med.
15:1062–1065. 2009. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wissmann C, Wild PJ, Kaiser S, Roepcke S,
Stoehr R, Woenckhaus M, Kristiansen G, Hsieh JC, Hofstaedter F,
Hartmann A, et al: WIF1, a component of the Wnt pathway, is
down-regulated in prostate, breast, lung, and bladder cancer. J
Pathol. 201:204–212. 2003. View Article : Google Scholar : PubMed/NCBI
|
56
|
MacDonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: Components, mechanisms and diseases.
Dev cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
57
|
Polakis P: Wnt signaling in cancer. Cold
Spring Harb Perspect Biol. 4:a0080522012. View Article : Google Scholar : PubMed/NCBI
|
58
|
Khramtsov AI, Khramtsova GF, Tretiakova M,
Huo D, Olopade OI and Goss KH: Wnt/beta-catenin pathway activation
is enriched in basal-like breast cancers and predicts poor outcome.
Am J Pathol. 176:2911–2920. 2010. View Article : Google Scholar : PubMed/NCBI
|
59
|
Lancaster MA, Louie CM, Silhavy JL,
Sintasath L, Decambre M, Nigam SK, Willert K and Gleeson JG:
Impaired Wnt-beta-catenin signaling disrupts adult renal
homeostasis and leads to cystic kidney ciliopathy. Nat Med.
15:1046–1054. 2009. View Article : Google Scholar : PubMed/NCBI
|
60
|
Eley L, Gabrielides C, Adams M, Johnson
CA, Hildebrandt F and Sayer JA: Jouberin localizes to collecting
ducts and interacts with nephrocystin-1. Kidney Int. 74:1139–1149.
2008. View Article : Google Scholar : PubMed/NCBI
|
61
|
Rodriguez-Boulan E and Macara IG:
Organization and execution of the epithelial polarity programme.
Nat Rev Mol Cell Biol. 15:225–242. 2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Macara IG, Guyer R, Richardson G, Huo Y
and Ahmed SM: Epithelial homeostasis. Curr Biol. 24:815–825. 2014.
View Article : Google Scholar
|
63
|
Saburi S, Hester I, Fischer E, Pontoglio
M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R and
McNeill H: Loss of Fat4 disrupts PCP signaling and oriented cell
division and leads to cystic kidney disease. Nat Genet.
40:1010–1015. 2008. View
Article : Google Scholar : PubMed/NCBI
|
64
|
Simons M, Gloy J, Ganner A, Bullerkotte A,
Bashkurov M, Krönig C, Schermer B, Benzing T, Cabello OA, Jenny A,
et al: Inversin, the gene product mutated in nephronophthisis type
II, functions as a molecular switch between Wnt signaling pathways.
Nat Genet. 37:537–543. 2005. View
Article : Google Scholar : PubMed/NCBI
|
65
|
Nguyen AM and Jacobs CR: Emerging role of
primary cilia as mechanosensors in osteocyte. Bone. 54:196–204.
2013. View Article : Google Scholar : PubMed/NCBI
|
66
|
Otto EA, Schermer B, Obara T, O'Toole JF,
Hiller KS, Mueller AM, Ruf RG, Hoefele J, Beekmann F, Landau D, et
al: Mutations in INVS encoding inversin cause nephronophthisis type
2, linking renal cystic disease to the function of primary cilia
and left-right axis determination. Nat Genet. 34:413–420. 2003.
View Article : Google Scholar : PubMed/NCBI
|