1
|
He C: Grand challenge commentary: RNA
epigenetics? Nat Chem Biol. 6:863–865. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Boccaletto P, Machnicka MA, Purta E,
Piatkowski P, Baginski B, Wirecki TK, de Crécy-Lagard V, Ross R,
Limbach PA, Kotter A, et al: MODOMICS: A database of RNA
modification pathways. 2017 update. Nucleic Acids Res.
46:D303–D307. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ji P, Wang X, Xie N and Li Y:
N6-methyladenosine in RNA and DNA: An epitranscriptomic and
epigenetic player implicated in determination of stem cell fate.
Stem Cells Int. 2018:32565242018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chai RC, Wu F, Wang QX, Zhang S, Zhang KN,
Liu YQ, Zhao Z, Jiang T, Wang YZ and Kang CS: m(6)A RNA methylation
regulators contribute to malignant progression and have clinical
prognostic impact in gliomas. Aging (Albany NY). 11:1204–1225.
2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Meyer KD and Jaffrey SR: Rethinking m(6)A
readers, writers, and erasers. Annu Rev Cell Dev Biol. 33:319–342.
2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Roundtree IA and He C: RNA
epigenetics-chemical messages for posttranscriptional gene
regulation. Curr Opin Chem Biol. 30:46–51. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dominissini D, Moshitch-Moshkovitz S,
Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K,
Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human
and mouse m6A RNA methylomes revealed by m6A-seq. Nature.
485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li X, Xiong X and Yi C: Epitranscriptome
sequencing technologies: Decoding RNA modifications. Nat Methods.
14:23–31. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang S, Sun C, Li J, Zhang E, Ma Z, Xu W,
Li H, Qiu M, Xu Y, Xia W, et al: Roles of RNA methylation by means
of N(6)-methyladenosine (m(6)A) in human cancers. Cancer Lett.
408:112–120. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang J and Yin P: Structural insights
into N(6)-methyladenosine (m(6)A) modification in the
transcriptome. Genomics Proteomics Bioinformatics. 16:85–98. 2018.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Luo J, Liu H, Luan S, He C and Li Z:
Aberrant regulation of mRNA m(6)A modification in cancer
development. Int J Mol Sci. 19:E25152018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Deng X, Su R, Feng X, Wei M and Chen J:
Role of N(6)-methyladenosine modification in cancer. Curr Opin
Genet Dev. 48:1–7. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen QF, Jia ZY, Yang ZQ, Fan WL and Shi
HB: Transarterial chemoembolization monotherapy versus combined
transarterial chemoembolization-microwave ablation therapy for
hepatocellular carcinoma tumors </=5 cm: A propensity analysis
at a single center. Cardiovasc Intervent Radiol. 40:1748–1755.
2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen QF, Huang T, Shen L and Li W:
Predictive value of a nomogram for hepatocellular carcinoma with
brain metastasis at initial diagnosis: A population-based study.
PLoS One. 14:e02092932019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen QF, Li W, Wu P, Shen L and Huang ZL:
Alternative splicing events are prognostic in hepatocellular
carcinoma. Aging (Albany NY). 11:4720–4735. 2019.PubMed/NCBI
|
16
|
Chen QF, Li W, Wu PH, Shen LJ and Huang
ZL: Significance of tumor-infiltrating immunocytes for predicting
prognosis of hepatitis B virus-related hepatocellular carcinoma.
World J Gastroenterol. 25:5266–5282. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Friedman J, Hastie T and Tibshirani R:
Regularization paths for generalized linear models via coordinate
descent. J Stat Softw. 33:1–22. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
McNeish DM: Using lasso for predictor
selection and to assuage overfitting: A method long overlooked in
behavioral sciences. Multivariate Behav Res. 50:471–484. 2015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Cheng X, Li M, Rao X, Zhang W, Li X, Wang
L and Huang G: KIAA1429 regulates the migration and invasion of
hepatocellular carcinoma by altering m6A modification of ID2 mRNA.
OncoTargets Ther. 12:3421–3428. 2019. View Article : Google Scholar
|
20
|
Chen M, Wei L, Law CT, Tsang FH, Shen J,
Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM, et al: RNA
N6-methyladenosine methyltransferase-like 3 promotes liver cancer
progression through YTHDF2-dependent posttranscriptional silencing
of SOCS2. Hepatology. 67:2254–2270. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhao X, Chen Y, Mao Q, Jiang X, Jiang W,
Chen J, Xu W, Zhong L and Sun X: Overexpression of YTHDF1 is
associated with poor prognosis in patients with hepatocellular
carcinoma. Cancer Biomark. 21:859–868. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH,
Wang F, Wang TT, Xu QG, Zhou WP and Sun SH: METTL14 suppresses the
metastatic potential of hepatocellular carcinoma by modulating
N6 -methyladenosine-dependent primary MicroRNA
processing. Hepatology. 65:529–543. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang Z, Li J, Feng G, Gao S, Wang Y, Zhang
S, Liu Y, Ye L, Li Y and Zhang X: MicroRNA-145 modulates
N6-methyladenosine levels by targeting the
3′-untranslated mRNA Region of the N6-methyladenosine
binding YTH domain family 2 protein. J Biol Chem. 292:3614–3623.
2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou Y, Yin Z, Hou B, Yu M, Chen R, Jin H
and Jian Z: Expression profiles and prognostic significance of RNA
N6-methyladenosine-related genes in patients with hepatocellular
carcinoma: Evidence from independent datasets. Cancer Manag Res.
11:3921–3931. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pan Y, Ma P, Liu Y, Li W and Shu Y:
Multiple functions of m6A RNA methylation in cancer. J
Hematol Oncol. 11:482018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun
G, Lu Z, Huang Y, Yang CG, et al: m6A RNA methylation
regulates the self-renewal and tumorigenesis of glioblastoma stem
cells. Cell Rep. 18:2622–2634. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Dai D, Wang H, Zhu L, Jin H and Wang X:
N6-methyladenosine links RNA metabolism to cancer progression. Cell
Death Dis. 9:1242018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xiang Y, Laurent B, Hsu CH, Nachtergaele
S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J, Wang S, et al: RNA
m6A methylation regulates the ultraviolet-induced DNA
damage response. Nature. 543:573–576. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gao SB, Li KL, Qiu H, Zhu LY, Pan CB, Zhao
Y, Wei SH, Shi S, Jin GH and Xue LX: Enhancing chemotherapy
sensitivity by targeting PcG via the ATM/p53 pathway. Am J Cancer
Res. 7:1874–1883. 2017.PubMed/NCBI
|
30
|
Meng YM, Liang J, Wu C, Xu J, Zeng DN, Yu
XJ, Ning H, Xu L and Zheng L: Monocytes/Macrophages promote
vascular CXCR4 expression via the ERK pathway in hepatocellular
carcinoma. Oncoimmunology. 7:e14087452017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cheng Y, Li H, Deng Y, Tai Y, Zeng K,
Zhang Y, Liu W, Zhang Q and Yang Y: Cancer-associated fibroblasts
induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster
immune suppression in hepatocellular carcinoma. Cell Death Dis.
9:4222018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhong L, Liao D, Zhang M, Zeng C, Li X,
Zhang R, Ma H and Kang T: YTHDF2 suppresses cell proliferation and
growth via destabilizing the EGFR mRNA in hepatocellular carcinoma.
Cancer Lett. 442:252–261. 2019. View Article : Google Scholar : PubMed/NCBI
|