
The roles of curcumin in regulating the tumor immunosuppressive microenvironment (Review)
- Authors:
- Yizhi Wang
- Jun Lu
- Bolun Jiang
- Junchao Guo
-
Affiliations: Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China - Published online on: March 3, 2020 https://doi.org/10.3892/ol.2020.11437
- Pages: 3059-3070
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tartari F, Santoni M, Pistelli M and Berardi R: Healthcare cost of HER2-positive and negative breast tumors in the United States (2012–2035). Cancer Treat Rev. 60:12–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maheshwari RK, Singh AK, Gaddipati J and Srimal RC: Multiple biological activities of curcumin: A short review. Life Sci. 78:2081–2087. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jin TR: Curcumin and dietary polyphenol research: Beyond drug discovery. Acta Pharmacol Sin. 39:779–786. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sa G and Das T: Anti cancer effects of curcumin: Cycle of life and death. Cell Div. 3:142008. View Article : Google Scholar : PubMed/NCBI | |
Saha S, Adhikary A, Bhattacharyya P, Das T and Sa G: Death by design: Where curcumin sensitizes drug-resistant tumours. Anticancer Res. 32:2567–2584. 2012.PubMed/NCBI | |
Aggarwal BB and Harikumar KB: Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 41:40–59. 2009. View Article : Google Scholar : PubMed/NCBI | |
Choudhuri T, Pal S, Das T and Sa G: Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem. 280:20059–20068. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kunnumakkara AB, Anand P and Aggarwal BB: Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 269:199–225. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang JB, Qi LL, Zheng SD and Wu TX: Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells. J Zhejiang Univ Sci B. 10:93–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee JH and Chung IK: Curcumin inhibits nuclear localization of telomerase by dissociating the Hsp90 co-chaperone p23 from hTERT. Cancer Lett. 290:76–86. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shehzad A and Lee YS: Molecular mechanisms of curcumin action: Signal transduction. Biofactors. 39:27–36. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bagratuni T, Mavrianou N, Gavalas NG, Tzannis K, Arapinis C, Liontos M, Christodoulou MI, Thomakos N, Haidopoulos D, Rodolakis A, et al: JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer. Eur J Cancer. 126:125–135. 2020. View Article : Google Scholar : PubMed/NCBI | |
Su T, Huang L, Zhang N, Peng S, Li X, Wei G, Zhai E, Zeng Z and Xu L: FGF14 functions as a tumor suppressor through inhibiting PI3K/AKT/mTOR pathway in colorectal cancer. J Cancer. 11:819–825. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rebouissou S and Nault JC: Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol. 72:215–229. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, et al: Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 35 (Suppl):S185–S198. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Hussaini R, White R, Atwi D, Fried A, Sampat S, Piao L, Pan Q and Banerjee P: TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors. Cancer Immunol Immunother. 67:761–774. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bahrami A, Fereidouni M, Pirro M, Bianconi V and Sahebkar A: Modulation of regulatory T cells by natural products in cancer. Cancer Lett. 459:72–85. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pan P, Huang YW, Oshima K, Yearsley M, Zhang J, Arnold M, Yu J and Wang LS: The immunomodulatory potential of natural compounds in tumor-bearing mice and humans. Crit Rev Food Sci Nutr. 59:992–1007. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schnekenburger M, Dicato M and Diederich MF: Anticancer potential of naturally occurring immunoepigenetic modulators: A promising avenue? Cancer. 125:1612–1628. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun XD, Liu XE and Huang DS: Curcumin induces apoptosis of triple-negative breast cancer cells by inhibition of EGFR expression. Mol Med Rep. 6:1267–1270. 2012. View Article : Google Scholar : PubMed/NCBI | |
McDougall AR, Tolcos M, Hooper SB, Cole TJ and Wallace MJ: Trop2: From development to disease. Dev Dyn. 244:99–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yang G, Zhang R, Dong L, Chen H, Bo J, Xue W and Huang Y: Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells. Int J Oncol. 53:515–526. 2018.PubMed/NCBI | |
Zhao Z, Li C, Xi H, Gao Y and Xu D: Curcumin induces apoptosis in pancreatic cancer cells through the induction of forkhead box O1 and inhibition of the PI3K/Akt pathway. Mol Med Rep. 12:5415–5422. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang JY, Wang X, Wang XJ, Zheng BZ, Wang Y, Wang X and Liang B: Curcumin inhibits the growth via Wnt/β-catenin pathway in non-small-cell lung cancer cells. Eur Rev Med Pharmacol Sci. 22:7492–7499. 2018.PubMed/NCBI | |
Srivastava NS and Srivastava RAK: Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine. 52:117–128. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Liu L, Wang Y, He A, Hu H, Zhang J, Han M and Huang Y: Curcumin inhibits the proliferation and invasion of MG-63 cells through inactivation of the p-JAK2/p-STAT3 pathway. Onco Targets Ther. 12:2011–2021. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang WH, Chen J, Zhang BR, Lu SJ, Wang F, Peng L, Dai JH and Sun YZ: Curcumin inhibits proliferation and enhances apoptosis in A549 cells by downregulating lncRNA UCA1. Pharmazie. 73:402–407. 2018.PubMed/NCBI | |
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sato Y, Yoshino H, Tsuruga E and Kashiwakura I: Fas ligand enhances apoptosis of human lung cancer cells cotreated with RIG-I-like receptor agonist and radiation. Curr Cancer Drug Targets. Jan 15–2020.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Lee KC, Lee KF, Tung SY, Huang WS, Lee LY, Chen WP, Chen CC, Teng CC, Shen CH, Hsieh MC and Kuo HC: Induction apoptosis of erinacine a in human colorectal cancer cells involving the expression of TNFR, fas, and fas ligand via the JNK/p300/p50 signaling pathway with histone acetylation. Front Pharmacol. 10:11742019. View Article : Google Scholar : PubMed/NCBI | |
Mortezaee K, Salehi E, Mirtavoos-Mahyari H, Motevaseli E, Najafi M, Farhood B, Rosengren RJ and Sahebkar A: Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J Cell Physiol. 234:12537–12550. 2019. View Article : Google Scholar : PubMed/NCBI | |
Harini L, Srivastava S, Gnanakumar GP, Karthikeyan B, Ross C, Krishnakumar V, Kannan VR, Sundar K and Kathiresan T: An ingenious non-spherical mesoporous silica nanoparticle cargo with curcumin induces mitochondria-mediated apoptosis in breast cancer (MCF-7) cells. Oncotarget. 10:1193–1208. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moustakas A and Heldin CH: Non-Smad TGF-beta signals. J Cell Sci. 118:3573–3584. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Hang Y, Liu J, Hou Y, Wang N and Wang M: Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell. Oncol Lett. 13:4825–4831. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen YY, Lin YJ, Huang WT, Hung CC, Lin HY, Tu YC, Liu DM, Lan SJ and Sheu MJ: Demethoxycurcumin-loaded chitosan nanoparticle downregulates DNA repair pathway to improve cisplatin-induced apoptosis in non-small cell lung cancer. Molecules. 23(pii): E32172018. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Song X, Shang M, Zou W, Zhang M, Wei H and Shao H: Curcumin exerts cytotoxicity dependent on reactive oxygen species accumulation in non-small-cell lung cancer cells. Future Oncol. 15:1243–1253. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tan C, Hu W, He Y, Zhang Y, Zhang G, Xu Y and Tang J: Cytokine-mediated therapeutic resistance in breast cancer. Cytokine. 108:151–159. 2018. View Article : Google Scholar : PubMed/NCBI | |
de Campos PS, Matte BF, Diel LF, Jesus LH, Bernardi L, Alves AM, Rados PV and Lamers ML: Low doses of curcuma longa modulates cell migration and cell-cell adhesion. Phytother Res. 31:1433–1440. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cao MT, Liu HF, Liu ZG, Xiao P, Chen JJ, Tan Y, Jiang XX, Jiang ZC, Qiu Y, Huang HJ, et al: Curcumin downregulates the expression of Snail via suppressing Smad2 pathway to inhibit TGF-β1-induced epithelial-mesenchymal transitions in hepatoma cells. Oncotarget. 8:108498–108508. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li W, Ma Z, Ma J, Li X, Xu Q, Duan W, Chen X, Lv Y, Zhou S, Wu E, et al: Hydrogen peroxide mediates hyperglycemia-induced invasive activity via ERK and p38 MAPK in human pancreatic cancer. Oncotarget. 6:31119–31133. 2015.PubMed/NCBI | |
Cao L, Liu J, Zhang L, Xiao X and Li W: Curcumin inhibits H2O2-induced invasion and migration of human pancreatic cancer via suppression of the ERK/NF-κB pathway. Oncol Rep. 36:2245–2251. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jászai J and Schmidt MHH: Trends and challenges in tumor anti-angiogenic therapies. Cells. 8(pii): E11022019. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Zhang Q and Luo W: Angiogenesis inhibitors as therapeutic agents in cancer: Challenges and future directions. Eur J Pharmacol. 793:76–81. 2016. View Article : Google Scholar : PubMed/NCBI | |
Norooznezhad AH and Norooznezhad F: Cannabinoids: Possible agents for treatment of psoriasis via suppression of angiogenesis and inflammation. Med Hypotheses. 99:15–18. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saberi-Karimian M, Katsiki N, Caraglia M, Boccellino M, Majeed M and Sahebkar A: Vascular endothelial growth factor: An important molecular target of curcumin. Crit Rev Food Sci Nutr. 59:299–312. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiao D, Wang J, Lu W, Tang X, Chen J, Mou H and Chen QY: Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol Ther Oncolytics. 3:160182016. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Shi S, Meng Q, Liang D, Ji S, Zhang B, Qin Y, Xu J, Ni Q and Yu X: Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: Where we are and where we are going. Exp Mol Med. 49:e4062017. View Article : Google Scholar : PubMed/NCBI | |
Su P, Yang Y, Wang G, Chen X and Ju Y: Curcumin attenuates resistance to irinotecan via induction of apoptosis of cancer stem cells in chemoresistant colon cancer cells. Int J Oncol. 53:1343–1353. 2018.PubMed/NCBI | |
Zhou QM, Sun Y, Lu YY, Zhang H, Chen QL and Su SB: Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int. 17:842017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu J, Xu X and Li L: Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemother Pharmacol. 79:479–87. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV and Cheng JQ: MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 68:425–433. 2008. View Article : Google Scholar : PubMed/NCBI | |
Batista S, Gregório AC, Hanada Otake A, Couto N and Costa-Silva B: The gastrointestinal tumor microenvironment: An updated biological and clinical perspective. J Oncol. 2019:62405052019. View Article : Google Scholar : PubMed/NCBI | |
O'Donnell JS, Teng MWL and Smyth MJ: Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 16:151–167. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wattenberg MM and Beatty GL: Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Semin Cancer Biol. Jan 15–2020.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Dunn GP, Koebel CM and Schreiber RD: Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 6:836–848. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Choi SY, Jung NC, Song JY, Seo HG, Lee HS and Lim DS: The effect of the tumor microenvironment and tumor-derived metabolites on dendritic cell function. J Cancer. 11:769–775. 2020. View Article : Google Scholar : PubMed/NCBI | |
Galland S and Stamenkovic I: Mesenchymal stromal cells in cancer: A review of their immunomodulatory functions and dual effects on tumor progression. J Pathol. Oct 14–2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Swann JB and Smyth MJ: Immune surveillance of tumors. J Clin Invest. 117:1137–1146. 2007. View Article : Google Scholar : PubMed/NCBI | |
Das T, Sa G, Paszkiewicz-Kozik E, Hilston C, Molto L, Rayman P, Kudo D, Biswas K, Bukowski RM, Finke JH and Tannenbaum CS: Renal cell carcinoma tumors induce T cell apoptosis through receptor-dependent and receptor-independent pathways. J Immunol. 180:4687–4696. 2008. View Article : Google Scholar : PubMed/NCBI | |
Snyder JT, Alexander-Miller MA, Berzofskyl JA and Belyakov IM: Molecular mechanisms and biological significance of CTL avidity. Curr HIV Res. 1:287–294. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen MC, Pangilinan CR and Lee CH: Salmonella breaks tumor immune tolerance by downregulating tumor programmed death-ligand 1 expression. Cancers (Basel). 12(pii): E572019. View Article : Google Scholar : PubMed/NCBI | |
Sa G, Das T, Moon C, Hilston CM, Rayman PA, Rini BI, Tannenbaum CS and Finke JH: GD3, an overexpressed tumor-derived ganglioside, mediates the apoptosis of activated but not resting T cells. Cancer Res. 69:3095–3104. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rabinovich GA, Gabrilovich D and Sotomayor EM: Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 25:267–296. 2007. View Article : Google Scholar : PubMed/NCBI | |
Geng Y, Liu J, Xie Y, Jiang H, Zuo K, Li T and Liu Z: Trichostatin A promotes GLI1 degradation and P21 expression in multiple myeloma cells. Cancer Manag Res. 10:2905–2914. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhou X, Song Y, Ji X, Zhang A, Zhang G and Gao Z: The mismatch repair gene hPMS1 (human postmeiotic segregation1) is down regulated in oral squamous cell carcinoma. Gene. 524:28–34. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fratta E, Coral S, Covre A, Parisi G, Colizzi F, Danielli R, Nicolay HJ, Sigalotti L and Maio M: The biology of cancer testis antigens: Putative function, regulation and therapeutic potential. Mol Oncol. 5:164–182. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Zhou J, Chen Z and Cheng AS: Understanding the epigenetic regulation of tumours and their microenvironments: Opportunities and problems for epigenetic therapy. J Pathol. 241:10–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dunn J and Rao S: Epigenetics and immunotherapy: The current state of play. Mol Immunol. 87:227–239. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K, et al: Neoantigen-directed immune escape in lung cancer evolution. Nature. 567:479–485. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dunn GP, Bruce AT, Ikeda H, Old LJ and Schreiber RD: Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol. 3:991–998. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mori S, Jewett A, Murakami-Mori K, Cavalcanti M and Bonavida B: The participation of the Fas-mediated cytotoxic pathway by natural killer cells is tumor-cell-dependent. Cancer Immunol Immunother. 44:282–290. 1997. View Article : Google Scholar : PubMed/NCBI | |
Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H and Okumura K: Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med. 7:94–100. 2001. View Article : Google Scholar : PubMed/NCBI | |
Street SE, Cretney E and Smyth MJ: Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood. 97:192–197. 2001. View Article : Google Scholar : PubMed/NCBI | |
MacKie RM, Reid R and Junor B: Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med. 348:567–568. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li W, Wang H, Ma Z, Zhang J, Ou-Yang W, Qi Y and Liu J: Multi-omics analysis of microenvironment characteristics and immune escape mechanisms of hepatocellular carcinoma. Front Oncol. 9:10192019. View Article : Google Scholar : PubMed/NCBI | |
Kim R, Emi M and Tanabe K: Cancer immunoediting from immune surveillance to immune escape. Immunology. 121:1–14. 2007. View Article : Google Scholar : PubMed/NCBI | |
Itakura E, Huang RR, Wen DR, Paul E, Wünsch PH and Cochran AJ: IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod Pathol. 24:801–809. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brody JR, Costantino CL, Berger AC, Sato T, Lisanti MP, Yeo CJ, Emmons RV and Witkiewicz AK: Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle. 8:1930–1934. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zou W: Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 5:263–274. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharyya S, Mandal D, Sen GS, Pal S, Banerjee S, Lahiry L, Finke JH, Tannenbaum CS, Das T and Sa G: Tumor-induced oxidative stress perturbs nuclear factor-kappaB activity-augmenting tumor necrosis factor-alpha-mediated T-cell death: Protection by Curcumin. Cancer Res. 67:362–370. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharyya S, Md Sakib Hossain D, Mohanty S, Sankar Sen G, Chattopadhyay S, Banerjee S, Chakraborty J, Das K, Sarkar D, Das T and Sa G: Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cell Mol Immunol. 7:306–315. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu B, Yu L and Zhao LZ: Curcumin up regulates T helper 1 cells in patients with colon cancer. Am J Transl Res. 9:1866–1875. 2017.PubMed/NCBI | |
Zou JY, Su CH, Luo HH, Lei YY, Zeng B, Zhu HS and Chen ZG: Curcumin converts Foxp3+ regulatory T cells to T helper 1 cells in patients with lung cancer. J Cell Biochem. 119:1420–1428. 2018. View Article : Google Scholar : PubMed/NCBI | |
Milano F, Mari L, van de Luijtgaarden W, Parikh K, Calpe S and Krishnadath KK: Nano-curcumin inhibits proliferation of esophageal adenocarcinoma cells and enhances the T cell mediated immune response. Front Oncol. 3:1372013. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Restifo NP, Yang JC, Morgan RA and Dudley ME: Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hawkins RE, Gilham DE, Debets R, Eshhar Z, Taylor N, Abken H and Schumacher TN; ATTACK Consortium, : Development of adoptive cell therapy for cancer: A clinical perspective. Hum Gene Ther. 21:665–672. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chang YF, Chuang HY, Hsu CH, Liu RS, Gambhir SS and Hwang JJ: Immunomodulation of curcumin on adoptive therapy with T cell functional imaging in mice. Cancer Prev Res (Phila). 5:444–452. 2012. View Article : Google Scholar : PubMed/NCBI | |
Luo F, Song X, Zhang Y and Chu Y: Low-dose curcumin leads to the inhibition of tumor growth via enhancing CTL-mediated antitumor immunity. Int Immunopharmacol. 11:1234–1240. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Miao L, Wang Y, Xu Z, Zhao Y, Shen Y, Xiang G and Huang L: Curcumin micelles remodel tumor microenvironment and enhance vaccine activity in an advanced melanoma model. Mol Ther. 24:364–374. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Xu J and Lan H: Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol. 12:762019. View Article : Google Scholar : PubMed/NCBI | |
Kim DH, Lee HG and Choi JM: Curcumin Elevates TFH cells and germinal center B cell response for antibody production in mice. Immune Netw. 19:e352019. View Article : Google Scholar : PubMed/NCBI | |
Shevach EM: Application of IL-2 therapy to target T regulatory cell function. Trends Immunol. 33:626–632. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oh JG, Hwang DJ and Heo TH: Direct regulation of IL-2 by curcumin. Biochem Biophys Res Commun. 495:300–305. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shiri S, Alizadeh AM, Baradaran B, Farhanghi B, Shanehbandi D, Khodayari S, Khodayari H and Tavassoli A: Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment. Asian Pac J Cancer Prev. 16:3917–3922. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Yang Z, Huang X, Zhang Z, Li J, Ju J, Zhang H and Ma J: Ilamycin C induces apoptosis and inhibits migration and invasion in triple-negative breast cancer by suppressing IL-6/STAT3 pathway. J Hematol Oncol. 12:602019. View Article : Google Scholar : PubMed/NCBI | |
Singh M, Ramos I, Asafu-Adjei D, Quispe-Tintaya W, Chandra D, Jahangir A, Zang X, Aggarwal BB and Gravekamp C: Curcumin improves the therapeutic efficacy of Listeria(at)-Mage-b vaccine in correlation with improved T-cell responses in blood of a triple-negative breast cancer model 4T1. Cancer Med. 2:571–582. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bill MA, Bakan C, Benson DM Jr, Fuchs J, Young G and Lesinski GB: Curcumin induces proapoptotic effects against human melanoma cells and modulates the cellular response to immunotherapeutic cytokines. Mol Cancer Ther. 8:2726–2735. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Jia Y, Yao Z, Huang J, Hao M, Yao S, Lian N, Zhang F, Zhang C, Chen X, et al: Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell. Cell Signal. 33:79–85. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang HG, Kim H, Liu C, Yu S, Wang J, Grizzle WE, Kimberly RP and Barnes S: Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity. Biochim Biophys Acta. 1773:1116–1123. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee HH and Cho H: Improved anti-cancer effect of curcumin on breast cancer cells by increasing the activity of natural killer cells. J Microbiol Biotechnol. 28:874–882. 2018. View Article : Google Scholar : PubMed/NCBI | |
Halder RC, Almasi A, Sagong B, Leung J, Jewett A and Fiala M: Curcuminoids and ω-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon γ production. Front Physiol. 22:6:1292015. | |
Mills CD, Kincaid K, Alt JM, Heilman MJ and Hill AM: M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 164:6166–6173. 2000. View Article : Google Scholar : PubMed/NCBI | |
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Hussaini R, White R, Atwi D, Fried A, Sampat S, Piao L, Pan Q and Banerjee P: TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors. Cancer Immunol Immunother. 67:761–774. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Fried A, Hussaini R, White R, Baidoo J, Yalamanchi S and Banerjee P: Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells. J Exp Clin Cancer Res. 37:1682018. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Baidoo JNE, Sampat S, Mancuso A, David L, Cohen LS, Zhou S and Banerjee P: Liposomal TriCurin, a synergistic combination of curcumin, epicatechin gallate and resveratrol, repolarizes tumor-associated microglia/macrophages, and eliminates glioblastoma (GBM) and GBM stem cells. Molecules. 23(pii): E2012018. View Article : Google Scholar : PubMed/NCBI | |
Kuttan R, Sudheeran PC and Josph CD: Turmeric and curcumin as topical agents in cancer therapy. Tumori. 73:29–31. 1987. View Article : Google Scholar : PubMed/NCBI | |
Pastorelli D, Fabricio ASC, Giovanis P, D'Ippolito S, Fiduccia P, Soldà C, Buda A, Sperti C, Bardini R, Da Dalt G, et al: Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol Res. 132:72–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
James MI, Iwuji C, Irving G, Karmokar A, Higgins JA, Griffin-Teal N, Thomas A, Greaves P, Cai H, Patel SR, et al: Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy. Cancer Lett. 364:135–141. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mahammedi H, Planchat E, Pouget M, Durando X, Curé H, Guy L, Van-Praagh I, Savareux L, Atger M, Bayet-Robert M, et al: The New Combination docetaxel, prednisone and curcumin in patients with castration-resistant prostate cancer: A pilot phase II study. Oncology. 90:69–78. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ryan JL, Heckler CE, Ling M, Katz A, Williams JP, Pentland AP and Morrow GR: Curcumin for radiation dermatitis: A randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res. 180:34–43. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V and Kurzrock R: Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 14:4491–4499. 2008. View Article : Google Scholar : PubMed/NCBI | |
Saif MW: Is there a role for herbal medicine in the treatment of pancreatic cancer? Highlights from the ‘44th ASCO Annual Meeting’. Chicago, IL, USA. May 30-June 3, 2008. JOP. 9:403–407. 2008.PubMed/NCBI | |
Epelbaum R, Schaffer M, Vizel B, Badmaev V and Bar-Sela G: Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr Cancer. 62:1137–1141. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kanai M, Yoshimura K, Asada M, Imaizumi A, Suzuki C, Matsumoto S, Nishimura T, Mori Y, Masui T, Kawaguchi Y, et al: A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol. 68:157–164. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wan Y, Liang Y, Liang F, Shen N, Shinozuka K, Yu JT, Ran C, Quan Q, Tanzi RE and Zhang C: A curcumin analog reduces levels of the Alzheimer's disease-associated amyloid-β protein by modulating AβPP processing and autophagy. J Alzheimers Dis. 72:761–771. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rezzani R, Franco C and Rodella LF: Curcumin as a therapeutic strategy in liver diseases. Nutrients. 11(pii): E24982019. View Article : Google Scholar : PubMed/NCBI | |
Fleenor BS, Carlini NA and Campbell MS: Curcumin and arterial function in health and disease: Impact on oxidative stress and inflammation. Curr Opin Clin Nutr Metab Care. 22:459–464. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Pi C, Ye Y, Zhao L and Wei Y: Recent advances of analogues of curcumin for treatment of cancer. Eur J Med Chem. 180:524–535. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tønnesen HH, Másson M and Loftsson T: Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: Solubility, chemical and photochemical stability. Int J Pharm. 244:127–135. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li X, Uehara S, Sawangrat K, Morishita M, Kusamori K, Katsumi H, Sakane T and Yamamoto A: Improvement of intestinal absorption of curcumin by cyclodextrins and the mechanisms underlying absorption enhancement. Int J Pharm. 535:340–349. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bisht S, Feldmann G, Soni S, Ravi R, Karikar C and Maitra A and Maitra A: Polymeric nanoparticle-encapsulated curcumin (‘nanocurcumin’): A novel strategy for human cancer therapy. J Nanobiotechnology. 5:32007. View Article : Google Scholar : PubMed/NCBI | |
Han W, Xie B, Li Y, Shi L, Wan J, Chen X and Wang H: Orally deliverable nanotherapeutics for the synergistic treatment of colitis-associated colorectal cancer. Theranostics. 9:7458–7473. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo F, Fu Q, Jin C, Ji X, Yan Q, Yang Q, Wu D, Gao Y, Hong W, Li A and Yang G: Dual functional matrix metalloproteinase-responsive curcumin-loaded nanoparticles for tumor-targeted treatment. Drug Deliv. 26:1027–1038. 2019. View Article : Google Scholar : PubMed/NCBI |