1
|
Arber DA, Orazi A, Hasserjian R, Thiele J,
Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW:
The 2016 revision to the World Health Organization classification
of myeloid neoplasms andacute leukemia. Blood. 127:2391–2405. 2016.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Barraco D, Carobolante F, Candoni A,
Simeone E, Piccaluga P, Tabanelli V and Fanin R: Complete and
long-lasting cytologic and molecular remission of
FIP1L1-PDGFRA-positive acute eosinophil myeloid leukemia, treated
with low-dose imatinib monotherapy. Eur J Haematol. 92:541–545.
2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Huang Q, Snyder DS, Chu P, Gaal KK, Chang
KL and Weiss LM: PDGFRA rearrangement leading to
hyper-eosinophilia, T lymphoblastic lymphoma, myeloproliferative
neoplasm and precursor B-cell acute lymphoblastic leukemia.
Leukemia. 25:371–375. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Noel P: Eosinophilic myeloid disorders.
Semin Hematol. 49:120–127. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Savage N, George TI and Gotlib J: Myeloid
neoplasms associated with eosinophilia and rearrangement of PDGFRA,
PDGFRB, and FGFR1: a review. Int J Lab Hematol. 35:491–500. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Sandén C, Ageberg M, Petersson J,
Lennartsson A and Gullberg U: Forced expression of the DEK-NUP214
fusion protein promotes proliferation dependent on upregulation of
mTOR. BMC Cancer. 13:4402013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fanta PT, Sicklick JK, Betz BL and
Peterson MR: In vivo imatinib sensitivity in a patient with GI
stromal tumor bearing a PDGFRA deletion DIM842-844. J Clin Oncol.
33:e41–e44. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Reiter A and Gotlib J: Myeloid neoplasms
with eosinophilia. Blood. 129:704–714. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Metzgeroth G, Walz C, Score J, Siebert R,
Schnittger S, Haferlach C, Popp H, Haferlach T, Erben P, Mix J, et
al: Recurrent finding of the FIP1L1-PDGFRA fusion gene in
eosinophilia-associated AML and lymphoblastic T-cell lymphoma.
Leukemia. 21:1183–1188. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Deschler B and Lubbert M: Acute myeloid
leukemia: Epidemiology and etiology. Cancer. 107:2099–2107. 2006.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Grimwade D, Hills RK, Moorman AV, Walker
H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ and Burnett
AK; National Cancer Research Institute Adult Leukaemia Working
Group, : National Cancer Research Institute Adult Leukaemia Working
Group Refinement of cytogenetic classification in acute myeloid
leukemia: Determination of prognostic significance of rare
recurring chromosomal abnormalities among 5876 younger adult
patients treated in the United Kingdom Medical Research Council
trials. Blood. 116:354–365. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tarlock K, Alonzo TA, Moraleda PP, Gerbing
RB, Raimondi SC, Hirsch BA, Ravindranath Y, Lange B, Woods WG,
Gamis AS and Meshinchi S: Acute myeloid leukaemia (AML) with
t(6;9)(p23;q34) is associated with poor outcome in childhood AML
regardless of FLT3-ITD status: A report from the Children's
Oncology Group. Br J Haematol. 166:254–259. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ishiyama K, Takami A, Kanda Y, Nakao S,
Hidaka M, Maeda T, Naoe T, Taniguchi S, Kawa K, Nagamura T, et al:
Allogeneic hematopoietic stem cell transplantation for acute
myeloid leukemia with t(6;9)(p23;q34) dramatically improves the
patient prognosis: A matched-pair analysis. Leukemia. 26:461–464.
2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Valent P, Gleich GJ, Reiter A, Roufosse F,
Weller PF, Hellmann A, Metzgeroth G, Leiferman KM, Arock M, Sotlar
K, et al: Pathogenesis and classification of eosinophil disorders:
A review of recent developments in the field. Expert Rev Hematol.
5:157–176. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Baccarani M, Cilloni D, Rondoni M,
Ottaviani E, Messa F, Merante S, Tiribelli M, Buccisano F, Testoni
N, Gottardi E, et al: The efficacy of imatinib mesylate in patients
with FIP1L1-PDGFRA-positive hypereosinophilic syndrome. Results of
a multicenter prospective study. Haematologica. 92:1173–1179. 2007.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ng HJ, Tan DCL, Yiu RC and How GF:
Maintenance therapy with Imatinib appears necessary despite
molecular remission in FIP1L1-PDGFRA fusion gene positive
hypereosinophilic disorder. Leuk Res. 32:169–171. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Campregher PV, Halley NDS, Vieira GA,
Fernandes JF, Velloso EDRP, Ali S, Mughal T, Miller V, Mangueira
CLP, Odone V and Hamerschlak N: Identification of a novel fusion
TBL1X R1-PDGFRB in a patient with acute myeloid leukemia harboring
the DEK-NUP214 fusion and clinical response to dasatinib. Leuk
Lymphoma. 58:2969–2972. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pardanani A, Ketterling RP, Brockman SR,
Flynn HC, Paternoster SF, Shearer BM, Reeder TL, Li CY, Cross NC,
Cools J, et al: CHIC2 deletion, a surrogate for FIP1L1-PDGFRA
fusion, occurs in systemic mastocytosis associated with
eosinophilia and predicts response to imatinib mesylate therapy.
Blood. 102:3093–3096. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pardanani A, Brockman SR, Paternoster SF,
Flynn HC, Ketterling RP, Lasho TL, Ho CL, Li CY, Dewald GW and
Tefferi A: FIP1L1-PDGFRA fusion: Prevalence and clinicopathologic
correlates in 89 consecutive patients with moderate to severe
eosinophilia. Blood. 104:3038–3045. 2004. View Article : Google Scholar : PubMed/NCBI
|