Emerging non‑invasive detection methodologies for lung cancer (Review)
- Authors:
- Zhen Li
- Jinian Shu
- Bo Yang
- Zuojian Zhang
- Jingyun Huang
- Yang Chen
-
Affiliations: Beijing Advanced Sciences and Innovation Center, Chinese Academy of Sciences, Beijing 101407, P.R. China, National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China - Published online on: March 12, 2020 https://doi.org/10.3892/ol.2020.11460
- Pages: 3389-3399
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Calvayrac O, Pradines A, Pons E, Mazieres J and Guibert N: Molecular biomarkers for lung adenocarcinoma. Eur Respir J. 49:16017342017. View Article : Google Scholar : PubMed/NCBI | |
Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, Wolf J, Raje NS, Diamond EL, Hollebecque A, et al: Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 373:726–736. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, et al: EGF receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 101:13306–13311. 2004. View Article : Google Scholar : PubMed/NCBI | |
Walter AO, Sjin RT, Haringsma HJ, Ohashi K, Sun J, Lee K, Dubrovskiy A, Labenski M, Zhu Z, Wang Z, et al: Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov. 3:1404–1415. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dugay F, Llamas-Gutierrez F, Gournay M, Medane S, Mazet F, Chiforeanu DC, Becker E, Lamy R, Léna H, Rioux-Leclercq N, et al: Clinicopathological characteristics of ROS1- and RET-rearranged NSCLC in caucasian patients. Data from a cohort of 713 non-squamous NSCLC lacking KRAS/EGFR/HER2/BRAF/PIK3CA/ALK alterations. Oncotarget. 8:53336–53351. 2017. View Article : Google Scholar : PubMed/NCBI | |
Doseeva V, Colpitts T, Gao G, Woodcock J and Knezevic V: Performance of a multiplexed dual analyte immunoassay for the early detection of non-small cell lung cancer. J Transl Med. 13:552015. View Article : Google Scholar : PubMed/NCBI | |
Plaks V, Koopman CD and Werb Z: Cancer. Circulating tumor cells. Science. 341:1186–1188. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rocco G, Pennazza G, Santonico M, Longo F, Rocco R, Crucitti P and Antonelli Incalzi R: Breathprinting and early diagnosis of lung cancer. J Thorac Oncol. 13:883–894. 2018. View Article : Google Scholar : PubMed/NCBI | |
van der Schee MP, Paff T, Brinkman P, van Aalderen WMC, Haarman EG and Sterk PJ: Breathomics in lung disease. Chest. 147:224–231. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chang JE, Lee DS, Ban SW, Oh J, Jung MY, Kim SH, Parka S, Persaude K and Jheon S: Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system. Sensors Actuators B Chem. 255:800–807. 2018. View Article : Google Scholar | |
Chae YK and Oh MS: Detection of minimal residual disease using ctDNA in lung cancer: Current evidence and future directions. J Thorac Oncol. 14:16–24. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hou JM, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F and Dive C: Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol. 178:989–996. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Wang W, Xia B, Zhang S, Yuan H, Jiang H, Meng W, Zheng X and Wang X: Multiplexed serum biomarkers for the detection of lung cancer. EBioMedicine. 11:210–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Haick H, Broza YY, Mochalski P, Ruzsanyi V and Amann A: Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 43:1423–1449. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fiala C and Diamandis EP: Circulating tumor DNA for personalized lung cancer monitoring. BMC Med. 15:1572017. View Article : Google Scholar : PubMed/NCBI | |
Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, et al: Circulating mutant DNA to assess tumor dynamics. Nat Med. 14:985–990. 2008. View Article : Google Scholar : PubMed/NCBI | |
Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore DA, Veeriah S, Rosenthal R, et al: Corrigendum: Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 554:2642018. View Article : Google Scholar : PubMed/NCBI | |
Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, et al: Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 359:926–930. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ehrlich M: DNA hypomethylation in cancer cells. Epigenomics. 1:239–259. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ooki A, Maleki Z, Tsay JJ, Goparaju C, Brait M, Turaga N, Nam HS, Rom WN, Pass HI, Sidransky D, et al: A Panel of novel detection and prognostic methylated DNA markers in primary non-small cell lung cancer and serum DNA. Clin Cancer Res. 23:7141–7152. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wielscher M, Vierlinger K, Kegler U, Ziesche R, Gsur A and Weinhausel A: Diagnostic performance of plasma DNA methylation profiles in lung cancer, pulmonary fibrosis and COPD. EBioMedicine. 2:929–936. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ilse P, Biesterfeld S, Pomjanski N, Wrobel C and Schramm M: Analysis of SHOX2 methylation as an aid to cytology in lung cancer diagnosis. Cancer Genomics Proteomics. 11:251–258. 2014.PubMed/NCBI | |
Zhao QT, Guo T, Wang HE, Zhang XP, Zhang H, Wang ZK, Yuan Z and Duan GC: Diagnostic value of SHOX2 DNA methylation in lung cancer: A meta-analysis. Onco Targets Ther. 8:3433–3439. 2015.PubMed/NCBI | |
Lu Y, Li S, Zhu S, Gong Y, Shi J and Xu L: Methylated DNA/RNA in body fluids as biomarkers for lung cancer. Biol Proced Online. 19:22017. View Article : Google Scholar : PubMed/NCBI | |
Hernandez HG, Tse MY, Pang SC, Arboleda H and Forero DA: Optimizing methodologies for PCR-based DNA methylation analysis. Biotechniques. 55:181–197. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang ZH, Hu Y, Hua D, Wu YY, Song MX and Cheng ZH: Quantitative analysis of multiple methylated genes in plasma for the diagnosis and prognosis of hepatocellular carcinoma. Exp Mol Pathol. 91:702–707. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X and Liang S: Roles of microRNA on cancer cell metabolism. J Transl Med. 10:2282012. View Article : Google Scholar : PubMed/NCBI | |
Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, et al: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 9:189–198. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Yang JM, Jin Y, Jheon S, Kim K, Lee CT, Chung JH and Paik JH: MicroRNA expression profiles and clinicopathological implications in lung adenocarcinoma according to EGFR, KRAS, and ALK status. Oncotarget. 8:8484–8498. 2017.PubMed/NCBI | |
Li D, Wei Y, Wang D, Gao H and Liu K: MicroRNA-26b suppresses the metastasis of non-small cell lung cancer by targeting MIEN1 via NF-KB/MMP-9/VEGF pathways. Biochem Biophys Res Commun. 472:465–470. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dacic S, Kelly L, Shuai Y and Nikiforova MN: MiRNA expression profiling of lung adenocarcinomas: Correlation with mutational status. Mod Pathol. 23:1577–1582. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Kong H, Hou Y, Ge D, Huang W, Ou J, Yang D, Zhang L, Wu G, Song Y, et al: Two plasma microRNA panels for diagnosis and subtype discrimination of lung cancer. Lung Cancer. 123:44–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Leng Q, Lin Y and Jiang F, Lee CJ, Zhan M, Fang H, Wang Y and Jiang F: A plasma miRNA signature for lung cancer early detection. Oncotarget. 8:111902–111911. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arab A, Karimipoor M, Irani S, Kiani A, Zeinali S, Tafsiri E and Sheikhy K: Potential circulating miRNA signature for early detection of NSCLC. Cancer Genet. 216-217:150–158. 2017. View Article : Google Scholar : PubMed/NCBI | |
Halvorsen AR, Bjaanaes M, LeBlanc M, Holm AM, Bolstad N, Rubio L, Peñalver JC, Cervera J, Mojarrieta JC, López-Guerrero JA, et al: A unique set of 6 circulating microRNAs for early detection of non-small cell lung cancer. Oncotarget. 7:37250–37259. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Mannoor K, Gao L, Tan A, Guarnera MA, Zhan M, Shetty A, Stass SA, Xing L and Jiang F: Characterization of microRNA transcriptome in lung cancer by next-generation deep sequencing. Mol Oncol. 8:1208–1219. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sozzi G, Boeri M, Rossi M, Verri C, Suatoni P, Bravi F, Roz L, Conte D, Grassi M, Sverzellati N, et al: Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: A correlative MILD trial study. J Clin Oncol. 32:768–773. 2014. View Article : Google Scholar : PubMed/NCBI | |
Molina-Vila MA: Liquid biopsy in lung cancer: Present and future. Transl Lung Cancer Res. 5:452–454. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han MK, Oh YH, Kang J, Kim YP, Seo S, Kim J, Park K and Kim HS: Protein profiling in human sera for identification of potential lung cancer biomarkers using antibody microarray. Proteomics. 9:5544–5552. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nolen BM, Lomakin A, Marrangoni A, Velikokhatnaya L, Prosser D and Lokshin AE: Urinary protein biomarkers in the early detection of lung cancer. Cancer Prev Res (Phila). 8:111–119. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Sanchez LM, Jurado-Gamez B, Feu-Collado N, Valverde A, Canas A, Fernandez-Rueda JL, Aranda E and Rodríguez-Ariza A: Exhaled breath condensate biomarkers for the early diagnosis of lung cancer using proteomics. Am J Physiol Lung Cell Mol Physiol. 313:L664–L676. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jung M, Kim SH, Lee YJ, Hong S, Kang YA, Kim SK, Chang J, Rha SY, Kim JH, Kim DJ and Cho BC: Prognostic and predictive value of CEA and CYFRA 21-1 levels in advanced non-small cell lung cancer patients treated with gefitinib or erlotinib. Exp Ther Med. 2:685–693. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yanagita K, Nagashio R, Jiang SX, Kuchitsu Y, Hachimura K, Ichinoe M, Igawa S, Fukuda E, Goshima N, Satoh Y, et al: Cytoskeleton-Associated protein 4 is a novel serodiagnostic marker for lung cancer. Am J Pathol. 188:1328–1333. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Liu S, Qiao Z, Shang Z, Xia Z, Niu X, Qian L, Zhang Y, Fan L, Cao CX and Xiao H: Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal Chim Acta. 982:84–95. 2017. View Article : Google Scholar : PubMed/NCBI | |
Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, et al: Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 523:177–182. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen IH, Xue L, Hsu CC, Paez JS, Pan L, Andaluz H, Wendt MK, Iliuk AB, Zhu JK and Tao WA: Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci USA. 114:3175–3180. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jakobsen KR, Paulsen BS, Baek R, Varming K, Sorensen BS and Jorgensen MM: Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles. 4:266592015. View Article : Google Scholar : PubMed/NCBI | |
Kodadek T: Protein microarrays: Prospects and problems. Chem Biol. 8:105–115. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chaffer CL and Weinberg RA: A perspective on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI | |
Joosse SA, Gorges TM and Pantel K: Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med. 7:1–11. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hamilton G and Rath B: Detection of circulating tumor cells in non-small cell lung cancer. J Thorac Dis. 8:1024–1028. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tanaka F, Yoneda K, Kondo N, Hashimoto M, Takuwa T, Matsumoto S, Okumura Y, Rahman S, Tsubota N, Tsujimura T, et al: Circulating tumor cell as a diagnostic marker in primary lung cancer. Clin Cancer Res. 15:6980–6986. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sonn CH, Cho JH, Kim JW, Kang MS, Lee J and Kim J: Detection of circulating tumor cells in patients with non-small cell lung cancer using a size-based platform. Oncol Lett. 13:2717–2722. 2017. View Article : Google Scholar : PubMed/NCBI | |
Truini A, Alama A, Dal Bello MG, Coco S, Vanni I, Rijavec E, Genova C, Barletta G, Biello F and Grossi F: Clinical applications of circulating tumor cells in lung cancer patients by cell search system. Front Oncol. 4:2422014. View Article : Google Scholar : PubMed/NCBI | |
Ambrosone CB: Oxidants and antioxidants in breast cancer. Antioxid Redox Signal. 2:903–917. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hakim M, Broza YY, Barash O, Peled N, Phillips M, Amann A and Haick H: Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev. 112:5949–5966. 2012. View Article : Google Scholar : PubMed/NCBI | |
Filipiak W, Sponring A, Filipiak A, Ager C, Schubert J, Miekisch W, Amann A and Troppmair J: TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol Biomarkers Prev. 19:182–195. 2010. View Article : Google Scholar : PubMed/NCBI | |
Buszewski B, Ligor T, Jezierski T, Wenda-Piesik A, Walczak M and Rudnicka J: Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: Comparison with discrimination by canines. Anal Bioanal Chem. 404:141–146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rudnicka J, Walczak M, Kowalkowski T, Jezierski T and Buszewski B: Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography-mass spectrometry versus trained dogs. Sensors Actuators B Chem. 202:615–621. 2014. View Article : Google Scholar | |
Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN, Kloss R, Maxfield RA, Munawar MI, Pass HI, Rashid A, et al: Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin Chim Acta. 393:76–84. 2008. View Article : Google Scholar : PubMed/NCBI | |
Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN, Greenberg J, Kloss R, Maxfield RA, Munawar MI, Pass HI, et al: Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 3:95–109. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Hu Y, Wang D, Yu K, Wang L, Zou Y, Zhao C, Zhang X, Wang P and Ying K: The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. Cancer Biomark. 11:129–137. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brunner C, Szymczak W, Hollriegl V, Mortl S, Oelmez H, Bergner A, Huber RM, Hoeschen C and Oeh U: Discrimination of cancerous and non-cancerous cell lines by headspace-analysis with PTR-MS. Anal Bioanal Chem. 397:2315–2324. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brůhová Michalčíková R, Dryahina K and Španěl P: SIFT-MS quantification of several breath biomarkers of inflammatory bowel disease, IBD: A detailed study of the ion chemistry. Int J Mass Spectrom. 396:35–41. 2016. View Article : Google Scholar | |
Li Z, Xu C, Shu J, Yang B and Zou Y: Doping-assisted low-pressure photoionization mass spectrometry for the real-time detection of lung cancer-related volatile organic compounds. Talanta. 165:98–106. 2017. View Article : Google Scholar : PubMed/NCBI | |
Behera B, Joshi R, Anil Vishnu GK, Bhalerao S and Pandya HJ: Electronic-nose: A non-invasive technology for breath analysis of diabetes and lung cancer patients. J Breath Res. 13:0240012019. View Article : Google Scholar : PubMed/NCBI | |
Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A and Haick H: Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol. 4:669–673. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kort S, Brusse-Keizer M, Schouwink JH, Gerritsen JW and Van dPJ: Detection of non-small cell lung cancer by an electronic nose. Eur Respir J. 50 (Suppl 61):PA20322017. | |
Gasparri R, Santonico M, Valentini C, Sedda G, Borri A, Petrella F, Maisonneuve P, Pennazza G, D'Amico A, Di Natale C, et al: Volatile signature for the early diagnosis of lung cancer. J Breath Res. 10:0160072016. View Article : Google Scholar : PubMed/NCBI | |
Shehada N, Cancilla JC, Torrecilla JS, Pariente ES, Bronstrup G, Christiansen S, Johnson DW, Leja M, Davies MP, Liran O, et al: Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano. 10:7047–7057. 2016. View Article : Google Scholar : PubMed/NCBI | |
Handa H, Usuba A, Maddula S, Baumbach JI, Mineshita M and Miyazawa T: Exhaled breath analysis for lung cancer detection using ion mobility spectrometry. PLoS One. 9:e1145552014. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, Li D, Du W, Yan M, Wang Y, Huo D and Hou C: Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening. Anal Bioanal Chem. 410:3671–3681. 2018. View Article : Google Scholar : PubMed/NCBI | |
Queralto N, Berliner AN, Goldsmith B, Martino R, Rhodes P and Lim SH: Detecting cancer by breath volatile organic compound analysis: A review of array-based sensors. J Breath Res. 8:0271122014. View Article : Google Scholar : PubMed/NCBI | |
Aravanis AM, Lee M and Klausner RD: Next-Generation sequencing of circulating tumor DNA for early cancer detection. Cell. 168:571–574. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Han X and Sun Y: DNA methylation signatures in circulating cell-free DNA as biomarkers for the early detection of cancer. Sci China Life Sci. 60:356–362. 2017. View Article : Google Scholar : PubMed/NCBI | |
Iqbal MA, Arora S, Prakasam G, Calin GA and Syed MA: MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med. 70:3–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
Keller A, Leidinger P, Gislefoss R, Haugen A, Langseth H, Staehler P, Lenhof HP and Meese E: Stable serum miRNA profiles as potential tool for non-invasive lung cancer diagnosis. RNA Biol. 8:506–516. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li A, Zhang T, Zheng M, Liu Y and Chen Z: Exosomal proteins as potential markers of tumor diagnosis. J Hematol Oncol. 10:1752017. View Article : Google Scholar : PubMed/NCBI | |
Harouaka R, Kang Z, Zheng SY and Cao L: Circulating tumor cells: Advances in isolation and analysis, and challenges for clinical applications. Pharmacol Ther. 141:209–221. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cabel L, Proudhon C, Gortais H, Loirat D, Coussy F, Pierga JY and Bidard FC: Circulating tumor cells: Clinical validity and utility. Int J Clin Oncol. 22:421–430. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hofman P: Liquid biopsy and therapeutic targets: Present and future issues in thoracic oncology. Cancers (Basel). 9:E1542017. View Article : Google Scholar : PubMed/NCBI | |
Tsui DW and Berger MF: Profiling non-small cell lung cancer: From tumor to blood. Clin Cancer Res. 22:790–792. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sundaresan TK, Sequist LV, Heymach JV, Riely GJ, Janne PA, Koch WH, Sullivan JP, Fox DB, Maher R, Muzikansky A, et al: Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin Cancer Res. 22:1103–1110. 2016. View Article : Google Scholar : PubMed/NCBI | |
Midha A, Dearden S and McCormack R: EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: A systematic review and global map by ethnicity (mutMapII). Am J Cancer Res. 5:2892–2911. 2015.PubMed/NCBI | |
Liang W, Wu X, Fang W, Zhao Y, Yang Y, Hu Z, Xue C, Zhang J, Zhang J, Ma Y, et al: Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations. PLoS One. 9:e852452014. View Article : Google Scholar : PubMed/NCBI | |
Brandao EP, Pantarotto MG and Cruz M: A novel EGFR mutation in exon 18 with high sensitivity to EGFR TKI treatment with reduced dose. J Thorac Oncol. 7:e322012. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi Y, Togashi Y, Yatabe Y, Mizuuchi H, Jangchul P, Kondo C, Shimoji M, Sato K, Suda K, Tomizawa K, et al: EGFR exon 18 mutations in lung cancer: Molecular predictors of augmented sensitivity to afatinib or neratinib as compared with first- or third-generation TKIs. Clin Cancer Res. 21:5305–5313. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang B, Chu H and Yao Y: Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations. Onco Targets Ther. 9:3711–3726. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar JS, Squire J, et al: Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: Guideline from the college of American pathologists, international association for the study of lung cancer, and association for molecular pathology. J Thorac Oncol. 8:823–859. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tan CS, Kumarakulasinghe NB, Huang YQ, Ang YLE, Choo JR, Goh BC and Soo RA: Third generation EGFR TKIs: Current data and future directions. Mol Cancer. 17:292018. View Article : Google Scholar : PubMed/NCBI | |
Karachaliou N, Molina-Vila MA and Rosell R: The impact of rare EGFR mutations on the treatment response of patients with non-small cell lung cancer. Expert Rev Respir Med. 9:241–244. 2015. View Article : Google Scholar : PubMed/NCBI | |
Noh KW, Lee MS, Lee SE, Song JY, Shin HT, Kim YJ, Oh DY, Jung K, Sung M, Kim M, et al: Molecular breakdown: A comprehensive view of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer. J Pathol. 243:307–319. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vendrell JA, Taviaux S, Beganton B, Godreuil S, Audran P, Grand D, Clermont E, Serre I, Szablewski V, Coopman P, et al: Detection of known and novel ALK fusion transcripts in lung cancer patients using next-generation sequencing approaches. Sci Rep. 7:125102017. View Article : Google Scholar : PubMed/NCBI | |
Hofman P: ALK status assessment with liquid biopsies of lung cancer patients. Cancers (Basel). 9:E1062017. View Article : Google Scholar : PubMed/NCBI | |
Pailler E, Oulhen M, Borget I, Remon J, Ross K, Auger N, Billiot F, Ngo Camus M, Commo F, Lindsay CR, et al: Circulating tumor cells with aberrant ALK copy number predict progression-free survival during crizotinib treatment in ALK-rearranged non-small cell lung cancer patients. Cancer Res. 77:2222–2230. 2017. View Article : Google Scholar : PubMed/NCBI | |
Passaro A, Lazzari C, Karachaliou N, Spitaleri G, Pochesci A, Catania C, Rosell R and de Marinis F: Personalized treatment in advanced ALK-positive non-small cell lung cancer: From bench to clinical practice. Onco Targets Ther. 9:6361–6376. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, Ou SI, Pérol M, Dziadziuszko R, Rosell R, et al: Alectinib versus crizotinib in untreated ALK-Positive non-small-cell lung cancer. N Engl J Med. 377:829–838. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shen L and Ji HF: Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 370:25372014. View Article : Google Scholar : PubMed/NCBI | |
Waqar SN and Morgensztern D: Lorlatinib: A new-generation drug for ALK-positive NSCLC. Lancet Oncol. 19:1555–1557. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim RN, Choi YL, Lee MS, Lira ME, Mao M, Mann D, Stahl J, Licon A, Choi SJ, Van Vrancken M, et al: SEC31A-ALK fusion gene in lung adenocarcinoma. Cancer Res Treat. 48:398–402. 2016. View Article : Google Scholar : PubMed/NCBI | |
Barlesi F, Mazieres J, Merlio JP, Debieuvre D, Mosser J, Lena H, Ouafik L, Besse B, Rouquette I, Westeel V, et al: Routine molecular profiling of patients with advanced non-small-cell lung cancer: Results of a 1-year nationwide programme of the French cooperative thoracic intergroup (IFCT). Lancet. 387:1415–1426. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Torres JM, Viteri S, Molina MA and Rosell R: BRAF mutant non-small cell lung cancer and treatment with BRAF inhibitors. Transl Lung Cancer Res. 2:244–250. 2013.PubMed/NCBI | |
Planchard D, Groen HJM, Kim TM, Rigas JR, Souquet PJ, Baik CS, Bariesi F, Mazières J, Quoix EA, Curtis CM, et al: Interim results of a phase II study of the BRAF inhibitor (BRAFi) dabrafenib (D) in combination with the MEK inhibitor trametinib (T) in patients (pts) with BRAF V600E mutated (mut) metastatic non-small cell lung cancer (NSCLC). J Clin Oncol. 33 (15 Suppl):S80062015. View Article : Google Scholar | |
Planchard D, Besse B, Groen HJM, Souquet PJ, Quoix E, Baik CS, Barlesi F, Kim TM, Mazieres J, Novello S, et al: Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial. Lancet Oncol. 17:984–993. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chuang JC, Stehr H, Liang Y, Das M, Huang J, Diehn M, Wakelee HA and Neal JW: ERBB2-Mutated metastatic non-small cell lung cancer: Response and resistance to targeted therapies. J Thorac Oncol. 12:833–842. 2017. View Article : Google Scholar : PubMed/NCBI | |
Salgia R: MET in lung cancer: Biomarker selection based on scientific rationale. Mol Cancer Ther. 16:555–565. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gainor JF and Shaw AT: Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist. 18:865–875. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mochalski P, King J, Haas M, Unterkofler K, Amann A and Mayer G: Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease. BMC Nephrol. 15:432014. View Article : Google Scholar : PubMed/NCBI | |
Terelius Y and Ingelman-Sundberg M: Metabolism of n-pentane by ethanol-inducible cytochrome P-450 in liver microsomes and reconstituted membranes. Eur J Biochem. 161:303–308. 1986. View Article : Google Scholar : PubMed/NCBI | |
Kohlmuller D and Kochen W: Is n-pentane really an index of lipid peroxidation in humans and animals? A methodological reevaluation. Anal Biochem. 210:268–276. 1993. View Article : Google Scholar : PubMed/NCBI | |
Risby TH and Sehnert SS: Clinical application of breath biomarkers of oxidative stress status. Free Radic Biol Med. 27:1182–1192. 1999. View Article : Google Scholar : PubMed/NCBI | |
Marchitti SA, Brocker C, Stagos D and Vasiliou V: Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 4:697–720. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rahman I, van Schadewijk AA, Crowther AJ, Hiemstra PS, Stolk J, MacNee W and De Boer WI: 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 166:490–495. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vaz AD and Coon MJ: Hydrocarbon formation in the reductive cleavage of hydroperoxides by cytochrome P-450. Proc Natl Acad Sci USA. 84:1172–1176. 1987. View Article : Google Scholar : PubMed/NCBI | |
Branton PJ, McAdam KG, Winter DB, Liu C, Duke MG and Proctor CJ: Reduction of aldehydes and hydrogen cyanide yields in mainstream cigarette smoke using an amine functionalised ion exchange resin. Chem Cent J. 5:152011. View Article : Google Scholar : PubMed/NCBI | |
Kang JO, Slater G, Aufses AH Jr and Cohen G: Production of ethane by rats treated with the colon carcinogen, 1, 2-dimethylhydrazine. Biochem Pharmacol. 37:2967–2971. 1988. View Article : Google Scholar : PubMed/NCBI | |
Burdock GA: Fenaroli's handbook of flavor ingredients. CRC Press; 2016, View Article : Google Scholar | |
Smith D, Wang T and Spanel P: On-line, simultaneous quantification of ethanol, some metabolites and water vapour in breath following the ingestion of alcohol. Physiol Meas. 23:477–489. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xu ZQ, Broza YY, Ionsecu R, Tisch U, Ding L, Liu H, Song Q, Pan YY, Xiong FX, Gu KS, et al: A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br J Cancer. 108:941–950. 2013. View Article : Google Scholar : PubMed/NCBI | |
Eckel RH: Lipoprotein lipase A multifunctional enzyme relevant to common metabolic diseases. New Engl J Med. 320:1060–1068. 1989.PubMed/NCBI | |
Jia Z, Zhang H, Ong CN, Patra A, Lu Y, Lim CT and Venkatesan T: Detection of lung cancer: Concomitant volatile organic compounds and metabolomic profiling of six cancer cell lines of different histological origins. ACS Omega. 3:5131–5140. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peled N, Barash O, Tisch U, Ionescu R, Broza YY, Ilouze M, Mattei J, Bunn PA Jr, Hirsch FR and Haick H: Volatile fingerprints of cancer specific genetic mutations. Nanomedicine. 9:758–766. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Zhang H, Shu J, Ma P, Zhang P, Huang J, Li Z and Xu C: Vacuum-ultraviolet-excited and CH2Cl2/H2O-amplified ionization-coupled mass spectrometry for oxygenated organics analysis. Anal Chem. 90:1301–1308. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Yang B, Shu J, Zhang Z, Li Z and Jiang K: Kinetic understanding of the ultrahigh ionization efficiencies (up to 28%) of excited-state CH2Cl2-induced associative ionization: A case study with nitro compounds. Anal Chem. 91:5605–5612. 2019. View Article : Google Scholar : PubMed/NCBI |