1
|
Rosenberg B: Cisplatin: Its history and
possible mechanisms of action. Prestayko AW, Crooke ST and Carter
SK: Cisplatin: Current Status and New Developments. Academic Press;
NYC: pp. 9–21. 1980, View Article : Google Scholar
|
2
|
Dasari S and Tchounwou PB: Cisplatin in
cancer therapy: Molecular mechanisms of action. Eur J Pharmacol.
740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Joss RA, Bürki K, Dalquen P, Schatzmann E,
Leyvraz S, Cavalli F, Ludwing C, Siegenthaler P, Allberto P, Stahel
R, et al: Combination chemotherapy with mitomycin, vindesine, and
cisplatin for non-small cell lung cancer association of antitumor
activity with initial tumor burden and treatment center. Cancer.
65:2426–2434. 1990. View Article : Google Scholar : PubMed/NCBI
|
4
|
Garutti M, Pelizzari G, Bartoletti M,
Malfatti MC, Gerratana L, Tell G and Puglisi F: Platinum salts in
patients with breast cancer: A focus on predictive factors. Int J
Mol Sci. 20:E33902019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Eljack ND, Ma HY, Drucker J, Shen C,
Hambley TW, New EJ, Friedrich T and Clarke RJ: Mechanisms of cell
uptake and toxicity of the anticancer drug cisplatin. Metallomics.
6:2126–2133. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li C, Liu M, Yan A, Liu W, Hou J, Cai L
and Dong X: ERCC1 and the efficacy of cisplatin in patients with
resected non-small cell lung cancer. Tumour Biol. 35:12707–1212.
2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cocetta V, Ragazzi E and Montopoli M:
Mitochondrial Involvement in Cisplatin Resistance. Int J Mol Sci.
20:E33842019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bao A, Li Y, Tong Y, Zheng H, Wu W and Wei
C: 1,25-Dihydroxyvitamin D3 and cisplatin
synergistically induce apoptosis and cell cycle arrest in gastric
cancer cells. Int J Mol Med. 33:1177–1184. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hrzenjak A, Fischer C, Leithner K,
Wohlkoenig C, Quehenberger F, Olschewski A and Olschewski H: 838:
Panobinostat reduces hypoxia-related cisplatin resistance of
non-small cell lung carcinoma cells via HIF-1alpha destabilization.
Eur J Cancer. 50 (Suppl 5):S203–S204. 2014. View Article : Google Scholar
|
10
|
Latifi A, Abubaker K, Castrechini N, Ward
AC, Liongue C, Dobill F, Kumar J, Thompson EW, Quinn MA, Findlay JK
and Ahmed N: Cisplatin treatment of primary and metastatic
epithelial ovarian carcinomas generates residual cells with
mesenchymal stem cell-like profile. J Cell Biochem. 112:2850–2864.
2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sahu BD, Kalvala AK, Koneru M, Mahesh
Kumar J, Kuncha M, Rachamalla SS and Sistla R: Ameliorative effect
of fisetin on cisplatin-induced nephrotoxicity in rats via
modulation of NF-κB activation and antioxidant defence. PLoS One.
9:e1050702014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liao HY, Wang GP, Gu LJ, Huang SH, Chen
XL, Li Y and Cai SW: HIF-1α siRNA and cisplatin in combination
suppress tumor growth in a nude mice model of esophageal squamous
cell carcinoma. Asian Pac J Cancer Prev. 13:473–477. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Hamamoto R, Silva FP, Tsuge M, Nishidate
T, Katagiri T, Nakamura Y and Furukawa Y: Enhanced SMYD3 expression
is essential for the growth of breast cancer cells. Cancer Sci.
97:113–118. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zou JN, Wang SZ, Yang JS, Luo XG, Xie JH
and Xi T: Knockdown of SMYD3 by RNA interference down-regulates
c-Met expression and inhibits cells migration and invasion induced
by HGF. Cancer Lett. 280:78–85. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang L, Wang QT, Liu YP, Dong QQ, Hu HJ,
Miao Z, Li S, Liu Y, Zhou H, Zhang TC, et al: ATM signaling pathway
is implicated in the SMYD3-mediated proliferation and migration of
gastric cancer cells. J Gastric Cancer. 17:295–305. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Hu P, Chu GC, Zhu G, Yang H, Luthringer D,
Prins G, Habib F, Wang Y, Wang R, Chung LW and Zhau HE: Multiplexed
quantum dot labeling of activated c-Met signaling in
castration-resistant human prostate cancer. PLoS One. 6:e286702011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu C, Fang X, Ge Z, Jalink M, Kyo S,
Bjorkholm M, Gruber A, Sjoberg J and Xu D: The telomerase reverse
transcriptase (hTERT) gene is a direct target of the histone
methyltransferase SMYD3. Cancer Res. 67:2626–2631. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hassan KA, Wang L, O'Dowd P, Kim G,
Korkaya H, Davis A, Liu S, Kalemkerian GP and Wicha MS: Abstract
3309: Blocking the Notch pathway inhibits the
epithelial-mesenchymal transition (EMT) status in lung cancer and
alters chemoresistance. Cancer Res. 72:3309. 2012.
|
19
|
Chen YJ, Tsai CH, Wang PY and Teng SC:
SMYD3 promotes homologous recombination via regulation of
H3K4-mediated gene expression. Sci Rep. 7:38422017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zeng B, Li Z, Chen R, Guo N, Zhou J, Zhou
Q, Lin W, Cheng D, Liao Q, Zheng L and Gong Y: Epigenetic
regulation of miR-124 by hepatitis C virus core protein promotes
migration and invasion of intrahepatic cholangiocarcinoma cells by
targeting SMYD3. FEBS Lett. 586:3271–3278. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Furuta M, Kozaki KI, Tanaka S, Arii S,
Imoto I and Inazawa J: miR-124 and miR-203 are epigenetically
silenced tumor-suppressive microRNAs in hepatocellular carcinoma.
Carcinogenesis. 31:766–776. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xiang S, Fanyi K, Zhenfeng Z, Mingming R,
Qingjun M, Yanguang LI and Zhen S: miR-124 and miR-142 enhance
cisplatin sensitivity of non-small cell lung cancer cells through
repressing autophagy via directly targeting SIRT1. RSC Adv.
9:5234–5243. 2019. View Article : Google Scholar
|
23
|
Luo XG, Ding Y, Zhou QF, Ye L, Wang SZ and
Xi T: SET and MYND domain-containing protein 3 decreases
sensitivity to dexamethasone and stimulates cell adhesion and
migration in NIH3T3 cells. J Biosci Bioeng. 103:444–450. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak K and Schmittgen T: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Dandekar DH, Kumar M, Ladha JS, Ganesh KN
and Mitra D: A quantitative method for normalization of
transfection efficiency using enhanced green fluorescent protein.
Anal Biochem. 342:341–344. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Del Bello B, Valentini MA, Zunino F,
Comporti M and Maellaro E: Cleavage of Bcl-2 in oxidant- and
cisplatin-induced apoptosis of human melanoma cells. Oncogene.
20:4591–4595. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Isonishi S, Saitou M, Yasuda M, Ochiai K
and Tanaka T: Enhancement of sensitivity to cisplatin by orobol is
associated with increased mitochondrial cytochrome c release in
human ovarian carcinoma cells. Gynecol Oncol. 90:413–420. 2003.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Johnson LV, Walsh ML and Chen LB:
Localization of mitochondria in living cells with rhodamine 123.
Proc Natl Acad Sci USA. 77:990–994. 1980. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sarris ME, Moulos P, Haroniti A,
Giakountis A and Talianidis I: Smyd3 is a transcriptional
potentiator of multiple cancer-promoting genes and required for
liver and colon cancer development. Cancer Cell. 29:354–366. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Fei X, Ma Y, Liu X and Meng Z:
Overexpression of SMYD3 is predictive of unfavorable prognosis in
hepatocellular carcinoma. Tohoku J Exp Med. 243:219–226. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Fang Z and Rajewsky N: The impact of miRNA
target sites in coding sequences and in 3′UTRs. PLoS One.
6:e180672011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Bottino C, Peserico A, Simone C and
Caretti G: SMYD3: An oncogenic driver targeting epigenetic
regulation and signaling pathways. Cancers (Basel). 12:E1422020.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Sprowl JA, Lancaster CS, Pabla N, Hermann
E, Kosloske AM, Gibson AA, Li L, Zeeh D, Schlatter E, Janke LJ, et
al: Cisplatin-induced renal injury is independently mediated by
OCT2 and p53. Clin Cancer Res. 20:4026–4035. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Abedini MR, Muller EJ, Brun J, Bergeron R,
Gray DA and Tsang BK: Cisplatin induces p53-dependent FLICE-like
inhibitory protein ubiquitination in ovarian cancer cells. Cancer
Res. 68:4511–4517. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Dai B, Wan W, Zhang P, Zhang Y, Pan C,
Meng G, Xiao X, Wu Z, Jia W, Zhang J and Zhang L: SET and MYND
domain-containing protein 3 is overexpressed in human glioma and
contributes to tumorigenicity. Oncol Rep. 34:2722–2730. 2015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Brozovic A, Fritz G, Christmann M,
Zisowsky J, Jaehde U, Osmak M and Kaina B: Long-term activation of
SAPK/JNK, p38 kinase and fas-L expression by cisplatin is
attenuated in human carcinoma cells that acquired drug resistance.
Int J Cancer. 112:974–985. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Colon-Bolea P and Crespo P: Lysine
methylation in cancer: SMYD3-MAP3K2 teaches us new lessons in the
Ras-ERK pathway. Bioessays. 36:1162–1169. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Riera TV, Wigle TJ, Gureasko J,
Boriack-Sjodin PA and Copeland RA: Abstract 2144: Kinetic mechanism
of the lysine methyltransferase SMYD3 using MAP3K2 protein
substrate. Cancer Res. 75 (15 Suppl):S21442015.
|
39
|
Wang X, Li Y, Dai Y, Liu Q, Ning S, Liu J,
Shen Z, Zhu D, Jiang F, Zhang J and Li Z: Sulforaphane improves
chemotherapy efficacy by targeting cancer stem cell-like properties
via the miR-124/IL-6R/STAT3 axis. Sci Rep. 6:367962016. View Article : Google Scholar : PubMed/NCBI
|