Phenotypic screening using large‑scale genomic libraries to identify drug targets for the treatment of cancer (Review)
- Authors:
- Mitsuo Sato
-
Affiliations: Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461‑8673, Japan - Published online on: April 3, 2020 https://doi.org/10.3892/ol.2020.11512
- Pages: 3617-3626
-
Copyright: © Sato . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Armitage P and Doll R: The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer. 8:1–12. 1954. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B and Kinzler KW: The multistep nature of cancer. Trends Genet. 9:138–141. 1993. View Article : Google Scholar : PubMed/NCBI | |
Chaffer CL and Weinberg RA: How does multistep tumorigenesis really proceed? Cancer Discov. 5:22–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, et al: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483:603–607. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, Colaprico A, Wendl MC, Kim J, Reardon B, et al: Comprehensive characterization of cancer driver genes and mutations. Cell. 173:371–385 e18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Garraway LA and Lander ES: Lessons from the cancer genome. Cell. 153:17–37. 2013. View Article : Google Scholar : PubMed/NCBI | |
Seshadri R, Matthews C, Dobrovic A and Horsfall DJ: The significance of oncogene amplification in primary breast cancer. Int J Cancer. 43:270–272. 1989. View Article : Google Scholar : PubMed/NCBI | |
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al: Mutations of the BRAF gene in human cancer. Nature. 417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 350:2129–2139. 2004. View Article : Google Scholar : PubMed/NCBI | |
Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sato M, Shames DS, Gazdar AF and Minna JD: A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol. 2:327–343. 2007. View Article : Google Scholar : PubMed/NCBI | |
Murugan AK, Grieco M and Tsuchida N: RAS mutations in human cancers: Roles in precision medicine. Semin Cancer Biol. 59:23–35. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ryan MB and Corcoran RB: Therapeutic strategies to target RAS-mutant cancers. Nat Rev Clin Oncol. 15:709–720. 2018. View Article : Google Scholar : PubMed/NCBI | |
Govindan R, Fakih M, Price T, Falchook G, Desai J, Kuo J, Strickler J, Krauss J, Li B, Denlinger C, et al: OA02.02 Phase 1 study of safety, tolerability, PK and efficacy of AMG 510, a novel KRASG12C inhibitor, evaluated in NSCLC. J Thorac Oncol. 14 (Suppl):S2082019. View Article : Google Scholar | |
Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, Gaida K, Holt T, Knutson CG, Koppada N, et al: The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 575:217–223. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nagel R, Semenova EA and Berns A: Drugging the addict: Non-oncogene addiction as a target for cancer therapy. EMBO Rep. 17:1516–1531. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dai C, Whitesell L, Rogers AB and Lindquist S: Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell. 130:1005–1018. 2007. View Article : Google Scholar : PubMed/NCBI | |
McDonald ER III, de Weck A, Schlabach MR, Billy E, Mavrakis KJ, Hoffman GR, Belur D, Castelletti D, Frias E, Gampa K, et al: Project DRIVE: A compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell. 170:577–592 e10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schuster A, Erasimus H, Fritah S, Nazarov PV, van Dyck E, Niclou SP and Golebiewska A: RNAi/CRISPR Screens: From a pool to a valid hit. Trends Biotechnol. 37:38–55. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ, Zhao Z, Smogorzewska A, Sowa ME, Ang XL, et al: Cancer proliferation gene discovery through functional genomics. Science. 319:620–624. 2008. View Article : Google Scholar : PubMed/NCBI | |
Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR, Elledge SJ, Hannon GJ and Chang K: Profiling essential genes in human mammary cells by multiplex RNAi screening. Science. 319:617–620. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cheung HW, Cowley GS, Weir BA, Boehm JS, Rusin S, Scott JA, East A, Ali LD, Lizotte PH, Wong TC, et al: Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc Natl Acad Sci USA. 108:12372–12377. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cowley GS, Weir BA, Vazquez F, Tamayo P, Scott JA, Rusin S, East-Seletsky A, Ali LD, Gerath WF, Pantel SE, et al: Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci Data. 1:1400352014. View Article : Google Scholar : PubMed/NCBI | |
Marcotte R, Brown KR, Suarez F, Sayad A, Karamboulas K, Krzyzanowski PM, Sircoulomb F, Medrano M, Fedyshyn Y, Koh JLY, et al: Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov. 2:172–189. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA and Zhang F: Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 8:2281–2308. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG and Zhang F: Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 343:84–87. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Wei JJ, Sabatini DM and Lander ES: Genetic screens in human cells using the CRISPR-Cas9 system. Science. 343:80–84. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kakumu T, Sato M, Goto D, Kato T, Yogo N, Hase T, Morise M, Fukui T, Yokoi K, Sekido Y, et al: Identification of proteasomal catalytic subunit PSMA6 as a therapeutic target for lung cancer. Cancer Sci. 108:732–743. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tanaka I, Sato M, Kato T, Goto D, Kakumu T, Miyazawa A, Yogo N, Hase T, Morise M, Sekido Y, et al: eIF2β, a subunit of translation-initiation factor EIF2, is a potential therapeutic target for non-small cell lung cancer. Cancer Sci. 109:1843–1852. 2018. View Article : Google Scholar : PubMed/NCBI | |
O'Neil NJ, Bailey ML and Hieter P: Synthetic lethality and cancer. Nat Rev Genet. 18:613–623. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hsu TY, Simon LM, Neill NJ, Marcotte R, Sayad A, Bland CS, Echeverria GV, Sun T, Kurley SJ, Tyagi S, et al: The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature. 525:384–388. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kumar MS, Hancock DC, Molina-Arcas M, Steckel M, East P, Diefenbacher M, Armenteros-Monterroso E, Lassailly F, Matthews N, Nye E, et al: The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell. 149:642–655. 2012. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK and Elledge SJ: A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 137:835–848. 2009. View Article : Google Scholar : PubMed/NCBI | |
Scholl C, Fröhling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S, et al: Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 137:821–834. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, et al: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 462:108–112. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ngo VN, Marani M, Yang Y, Wright G, Staudt LM and Downward J: Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene. 29:4658–4670. 2010. View Article : Google Scholar : PubMed/NCBI | |
Costa-Cabral S, Brough R, Konde A, Aarts M, Campbell J, Marinari E, Riffell J, Bardelli A, Torrance C, Lord CJ and Ashworth A: CDK1 is a synthetic lethal target for KRAS mutant tumours. PLoS One. 11:e01490992016. View Article : Google Scholar : PubMed/NCBI | |
Downward J: RAS synthetic lethal screens revisited: Still seeking the elusive prize? Clin Cancer Res. 21:1802–1809. 2015. View Article : Google Scholar : PubMed/NCBI | |
Babij C, Zhang Y, Kurzeja RJ, Munzli A, Shehabeldin A, Fernando M, Quon K, Kassner PD, Ruefli-Brasse AA, Watson VJ, et al: STK33 kinase activity is nonessential in KRAS-dependent cancer cells. Cancer Res. 71:5818–5826. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fröhling S and Scholl C: STK33 kinase is not essential in KRAS-dependent cells-letter. Cancer Res. 71:7716author reply 7717. 2011. View Article : Google Scholar : PubMed/NCBI | |
Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, et al: COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids Res. 45D:D777–D783. 2017. View Article : Google Scholar | |
Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, Santos R, Rao Y, Sassi F, Pinnelli M, et al: Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 568:511–516. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chan EM, Shibue T, McFarland JM, Gaeta B, Ghandi M, Dumont N, Gonzalez A, McPartlan JS, Li T, Zhang Y, et al: WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature. 568:551–556. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal M, Banerjee T, Sommers JA, Iannascoli C, Pichierri P, Shoemaker RH and Brosh RM Jr: Werner syndrome helicase has a critical role in DNA damage responses in the absence of a functional fanconi anemia pathway. Cancer Res. 73:5497–5507. 2013. View Article : Google Scholar : PubMed/NCBI | |
Holohan C, Van Schaeybroeck S, Longley DB and Johnston PG: Cancer drug resistance: An evolving paradigm. Nat Rev Cancer. 13:714–726. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gottesman MM, Lavi O, Hall MD and Gillet JP: Toward a better understanding of the complexity of cancer drug resistance. Annu Rev Pharmacol Toxicol. 56:85–102. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jackson CM, Choi J and Lim M: Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat Immunol. 20:1100–1109. 2019. View Article : Google Scholar : PubMed/NCBI | |
Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M, Minna JD, Michnoff C, Hao W, Roth MG, et al: Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature. 446:815–819. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Morgan-Lappe S, Huang X, Li L, Zakula DM, Vernetti LA, Fesik SW and Shen Y: ‘Seed’ analysis of off-target siRNAs reveals an essential role of Mcl-1 in resistance to the small-molecule Bcl-2/Bcl-XL inhibitor ABT-737. Oncogene. 26:3972–3979. 2007. View Article : Google Scholar : PubMed/NCBI | |
Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A and Bernards R: Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 483:100–103. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kurata M, Rathe SK, Bailey NJ, Aumann NK, Jones JM, Veldhuijzen GW, Moriarity BS and Largaespada DA: Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML. Sci Rep. 6:361992016. View Article : Google Scholar : PubMed/NCBI | |
Hou P, Wu C, Wang Y, Qi R, Bhavanasi D, Zuo Z, Dos Santos C, Chen S, Chen Y, Zheng H, et al: A Genome-wide CRISPR screen identifies genes critical for resistance to FLT3 inhibitor AC220. Cancer Res. 77:4402–4413. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun W, He B, Yang B, Hu W, Cheng S, Xiao H, Yang Z, Wen X, Zhou L, Xie H, et al: Genome-wide CRISPR screen reveals SGOL1 as a druggable target of sorafenib-treated hepatocellular carcinoma. Lab Invest. 98:734–744. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sustic T, van Wageningen S, Bosdriesz E, Reid RJD, Dittmar J, Lieftink C, Beijersbergen RL, Wessels LFA, Rothstein R and Bernards R: A role for the unfolded protein response stress sensor ERN1 in regulating the response to MEK inhibitors in KRAS mutant colon cancers. Genome Med. 10:902018. View Article : Google Scholar : PubMed/NCBI | |
Sharma P and Allison JP: The future of immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khandelwal N, Breinig M, Speck T, Michels T, Kreutzer C, Sorrentino A, Sharma AK, Umansky L, Conrad H, Poschke I, et al: A high-throughput RNAi screen for detection of immune-checkpoint molecules that mediate tumor resistance to cytotoxic T lymphocytes. EMBO Mol Med. 7:450–463. 2015. View Article : Google Scholar : PubMed/NCBI | |
Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, Gartner JJ, Jia L, Steinberg SM, Yamamoto TN, et al: Identification of essential genes for cancer immunotherapy. Nature. 548:537–542. 2017. View Article : Google Scholar : PubMed/NCBI | |
Steeg PS: Targeting metastasis. Nat Rev Cancer. 16:201–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sato M, Shames DS and Hasegawa Y: Emerging evidence of epithelial-to-mesenchymal transition in lung carcinogenesis. Respirology. 17:1048–1059. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chaffer CL, San Juan BP, Lim E and Weinberg RA: EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 35:645–654. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yilmaz M and Christofori G: EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI | |
Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A and Sarkar S: EMT and tumor metastasis. Clin Transl Med. 4:62015. View Article : Google Scholar : PubMed/NCBI | |
Pavan S, Meyer-Schaller N, Diepenbruck M, Kalathur RKR, Saxena M and Christofori G: A kinome-wide high-content siRNA screen identifies MEK5-ERK5 signaling as critical for breast cancer cell EMT and metastasis. Oncogene. 37:4197–4213. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Fan J, Li Y, Li F, Chen P, Fan Y, Xia X and Wong ST: Genome-wide RNAi screening identifies genes inhibiting the migration of glioblastoma cells. PLoS One. 8:e619152013. View Article : Google Scholar : PubMed/NCBI | |
Paoli P, Giannoni E and Chiarugi P: Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 1833:3481–3498. 2013. View Article : Google Scholar : PubMed/NCBI | |
Taddei ML, Giannoni E, Fiaschi T and Chiarugi P: Anoikis: An emerging hallmark in health and diseases. J Pathol. 226:380–393. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takeyama Y, Sato M, Horio M, Hase T, Yoshida K, Yokoyama T, Nakashima H, Hashimoto N, Sekido Y, Gazdar AF, et al: Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett. 296:216–224. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eskiocak U, Kim SB, Ly P, Roig AI, Biglione S, Komurov K, Cornelius C, Wright WE, White MA and Shay JW: Functional parsing of driver mutations in the colorectal cancer genome reveals numerous suppressors of anchorage-independent growth. Cancer Res. 71:4359–4365. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al: The genomic landscapes of human breast and colorectal cancers. Science. 318:1108–1113. 2007. View Article : Google Scholar : PubMed/NCBI | |
Simpson CD, Hurren R, Kasimer D, MacLean N, Eberhard Y, Ketela T, Moffat J and Schimmer AD: A genome wide shRNA screen identifies α/β hydrolase domain containing 4 (ABHD4) as a novel regulator of anoikis resistance. Apoptosis. 17:666–678. 2012. View Article : Google Scholar : PubMed/NCBI | |
Larsson LG: Oncogene- and tumor suppressor gene-mediated suppression of cellular senescence. Semin Cancer Biol. 21:367–376. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gorgoulis VG and Halazonetis TD: Oncogene-induced senescence: The bright and dark side of the response. Curr Opin Cell Biol. 22:816–827. 2010. View Article : Google Scholar : PubMed/NCBI | |
Faget DV, Ren Q and Stewart SA: Unmasking senescence: Context-dependent effects of SASP in cancer. Nat Rev Cancer. 19:439–453. 2019. View Article : Google Scholar : PubMed/NCBI | |
Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 88:593–602. 1997. View Article : Google Scholar : PubMed/NCBI | |
Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, Marais R, Wynford-Thomas D and Bennett DC: Cellular senescence in naevi and immortalisation in melanoma: A role for p16? Br J Cancer. 95:496–505. 2006. View Article : Google Scholar : PubMed/NCBI | |
He S and Sharpless NE: Senescence in health and disease. Cell. 169:1000–1011. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vicent S, Chen R, Sayles LC, Lin C, Walker RG, Gillespie AK, Subramanian A, Hinkle G, Yang X, Saif S, et al: Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J Clin Invest. 120:3940–3952. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kaplon J, Hömig-Hölzel C, Gao L, Meissl K, Verdegaal EM, van der Burg SH, van Doorn R and Peeper DS: Near-genomewide RNAi screening for regulators of BRAF(V600E)-induced senescence identifies RASEF, a gene epigenetically silenced in melanoma. Pigment Cell Melanoma Res. 27:640–652. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tordella L, Khan S, Hohmeyer A, Banito A, Klotz S, Raguz S, Martin N, Dhamarlingam G, Carroll T, González Meljem JM, et al: SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. Genes Dev. 30:2187–2198. 2016. View Article : Google Scholar : PubMed/NCBI | |
Batlle E and Clevers H: Cancer stem cells revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nassar D and Blanpain C: Cancer stem cells: Basic concepts and therapeutic implications. Annu Rev Pathol. 11:47–76. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wolf J, Dewi DL, Fredebohm J, Müller-Decker K, Flechtenmacher C, Hoheisel JD and Boettcher M: A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res. 15:R1092013. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero DE, et al: A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell. 35:228–239. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gargiulo G, Serresi M, Cesaroni M, Hulsman D and van Lohuizen M: In vivo shRNA screens in solid tumors. Nat Protoc. 9:2880–2902. 2014. View Article : Google Scholar : PubMed/NCBI | |
Singh M, Venugopal C, Tokar T, Brown KR, McFarlane N, Bakhshinyan D, Vijayakumar T, Manoranjan B, Mahendram S, Vora P, et al: RNAi screen identifies essential regulators of human brain metastasis-initiating cells. Acta Neuropathol. 134:923–940. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Chamberlain L, Pak ML, Nagarajan A, Gupta R, Zhu LJ, Wright CM, Fong KM, Wajapeyee N and Green MR: A large-scale RNAi-based mouse tumorigenesis screen identifies new lung cancer tumor suppressors that repress FGFR signaling. Cancer Discov. 4:1168–1181. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iorns E, Ward TM, Dean S, Jegg A, Thomas D, Murugaesu N, Sims D, Mitsopoulos C, Fenwick K, Kozarewa I, et al: Whole genome in vivo RNAi screening identifies the leukemia inhibitory factor receptor as a novel breast tumor suppressor. Breast Cancer Res Treat. 135:79–91. 2012. View Article : Google Scholar : PubMed/NCBI | |
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411:494–498. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang H, La Russa M and Qi LS: CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 85:227–264. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nyga A, Cheema U and Loizidou M: 3D tumour models: Novel in vitro approaches to cancer studies. J Cell Commun Signal. 5:239–248. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, et al: Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 4:998–1013. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A, Needham R, Guo J, Gordon M, Chung N, et al: Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol. 26:9377–9386. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lam LT, Davis RE, Ngo VN, Lenz G, Wright G, Xu W, Zhao H, Yu X, Dang L and Staudt LM: Compensatory IKKalpha activation of classical NF-kappaB signaling during IKKbeta inhibition identified by an RNA interference sensitization screen. Proc Natl Acad Sci USA. 105:20798–20803. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Karlsson A and Johansson M: Identification of genes associated to 2′,2′-difluorodeoxycytidine resistance in HeLa cells with a lentiviral short-hairpin RNA library. Biochem Pharmacol. 82:210–215. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guerreiro AS, Fattet S, Kulesza DW, Atamer A, Elsing AN, Shalaby T, Jackson SP, Schoenwaelder SM, Grotzer MA, Delattre O and Arcaro A: A sensitized RNA interference screen identifies a novel role for the PI3K p110γ isoform in medulloblastoma cell proliferation and chemoresistance. Mol Cancer Res. 9:925–935. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu-Sullivan N, Zhang J, Bakleh A, Marchica J, Li J, Siolas D, Laquerre S, Degenhardt YY, Wooster R, Chang K, et al: Pooled shRNA screen for sensitizers to inhibition of the mitotic regulator polo-like kinase (PLK1). Oncotarget. 2:1254–1264. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fredebohm J, Wolf J, Hoheisel JD and Boettcher M: Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. J Cell Sci. 126:3380–3389. 2013. View Article : Google Scholar : PubMed/NCBI | |
Milosevic N, Kühnemuth B, Mühlberg L, Ripka S, Griesmann H, Lölkes C, Buchholz M, Aust D, Pilarsky C, Krug S, et al: Synthetic lethality screen identifies RPS6KA2 as modifier of epidermal growth factor receptor activity in pancreatic cancer. Neoplasia. 15:1354–1362. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wetterskog D, Shiu KK, Chong I, Meijer T, Mackay A, Lambros M, Cunningham D, Reis-Filho JS, Lord CJ and Ashworth A: Identification of novel determinants of resistance to lapatinib in ERBB2-amplified cancers. Oncogene. 33:966–976. 2014. View Article : Google Scholar : PubMed/NCBI | |
MacKay C, Carroll E, Ibrahim AFM, Garg A, Inman GJ, Hay RT and Alpi AF: E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin. Cancer Res. 74:2246–2257. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maruyama Y, Miyazaki T, Ikeda K, Okumura T, Sato W, Horie-Inoue K, Okamoto K, Takeda S and Inoue S: Short hairpin RNA library-based functional screening identified ribosomal protein L31 that modulates prostate cancer cell growth via p53 pathway. PLoS One. 9:e1087432014. View Article : Google Scholar : PubMed/NCBI | |
Sudo M, Mori S, Madan V, Yang H, Leong G and Koeffler HP: Short-hairpin RNA library: Identification of therapeutic partners for gefitinib-resistant non-small cell lung cancer. Oncotarget. 6:814–824. 2015. View Article : Google Scholar : PubMed/NCBI | |
Prahallad A, Heynen GJ, Germano G, Willems SM, Evers B, Vecchione L, Gambino V, Lieftink C, Beijersbergen RL, Di Nicolantonio F, et al: PTPN11 is a central node in intrinsic and acquired resistance to targeted cancer drugs. Cell Rep. 12:1978–1985. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi H, Nishimura H, Matsumoto K and Yoshida M: Identification of the determinants of 2-deoxyglucose sensitivity in cancer cells by shRNA library screening. Biochem Biophys Res Commun. 467:121–127. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi K, Iglesias-Bartolomé R, Wang Z, Callejas-Valera JL, Amornphimoltham P, Molinolo AA, Cohen EE, Califano JA, Lippman SM, Luo J and Gutkind JS: A synthetic-lethality RNAi screen reveals an ERK-mTOR co-targeting pro-apoptotic switch in PIK3CA+ oral cancers. Oncotarget. 7:10696–10709. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yamanoi K, Matsumura N, Murphy SK, Baba T, Abiko K, Hamanishi J, Yamaguchi K, Koshiyama M, Konishi I and Mandai M: Suppression of ABHD2, identified through a functional genomics screen, causes anoikis resistance, chemoresistance and poor prognosis in ovarian cancer. Oncotarget. 7:47620–47636. 2016. View Article : Google Scholar : PubMed/NCBI | |
Combes E, Andrade AF, Tosi D, Michaud HA, Coquel F, Garambois V, Desigaud D, Jarlier M, Coquelle A, Pasero P, et al: Inhibition of ataxia-telangiectasia mutated and RAD3-related (ATR) overcomes oxaliplatin resistance and promotes antitumor immunity in colorectal cancer. Cancer Res. 79:2933–2946. 2019. View Article : Google Scholar : PubMed/NCBI |