1
|
Mao Y, Yang D and Krasna MJ: Epidemiology
of lung cancer. Surg Oncol Clin N Am. 25:439–445. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Azar FE, Azami-Aghdash S, Pournaghi-Azar
F, Mazdaki A, Rezapour A, Ebrahimi P and Yousefzadeh N:
Cost-effectiveness of lung cancer screening and treatment methods:
A systematic review of systematic reviews. BMC Health Serv Res.
17:4132017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jacobsen MM, Silverstein SC, Quinn M,
Waterston LB, Thomas CA, Benneyan JC and Han PKJ: Timeliness of
access to lung cancer diagnosis and treatment: A scoping literature
review. Lung Cancer. 112:156–164. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Giaccone G: Clinical perspectives on
platinum resistance. Drugs. 59:9–37. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
D'Andrea A and Pellman D: Deubiquitinating
enzymes: A new class of biological regulators. Crit Rev Biochem Mol
Biol. 33:337–352. 1998. View Article : Google Scholar : PubMed/NCBI
|
6
|
Weathington NM and Mallampalli RK:
Emerging therapies targeting the ubiquitin proteasome system in
cancer. J Clin Invest. 124:6–12. 2014. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Welchman RL, Gordon C and Mayer RJ:
Ubiquitin and ubiquitin-like proteins as multifunctional signals.
Nat Rev Mol Cell Biol. 6:599–609. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nijman SM, Luna-Vargas MP, Velds A,
Brummelkamp TR, Dirac AM, Sixma TK and Bernards R: A genomic and
functional inventory of deubiquitinating enzymes. Cell.
123:773–786. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Song H, Tao L, Chen C, Pan L, Hao J, Ni Y,
Li D, Li B and Shi G: USP17-mediated deubiquitination and
stabilization of HDAC2 in cigarette smoke extract-induced
inflammation. Int J Clin Exp Pathol. 8:10707–10715. 2015.PubMed/NCBI
|
10
|
de la Vega M, Kelvin AA, Dunican DJ,
McFarlane C, Burrows JF, Jaworski J, Stevenson NJ, Dib K, Rappoport
JZ, Scott CJ, et al: The deubiquitinating enzyme USP17 is essential
for GTPase subcellular localization and cell motility. Nat Commun.
2:2592011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Han L, Yang J, Wang X, Wu Q, Yin S, Li Z,
Zhang J, Xing Y, Chen Z, Tsun A, et al: The E3 deubiquitinase USP17
is a positive regulator of retinoic acid-related orphan nuclear
receptor γt (RORγt) in Th17 cells. J Biol Chem. 289:25546–25555.
2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Borbely G, Haldosen LA, Dahlman-Wright K
and Zhao C: Induction of USP17 by combining BET and HDAC inhibitors
in breast cancer cells. Oncotarget. 6:33623–33635. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hu M, Chen H, Han C, Lan J, Xu Y, Li C,
Xue Y and Lou M: Expression and functional implications of USP17 in
glioma. Neurosci Lett. 616:125–131. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
McFarlane C, Kelvin AA, de la Vega M,
Govender U, Scott CJ, Burrows JF and Johnston JA: The
deubiquitinating enzyme USP17 is highly expressed in tumor
biopsies, is cell cycle regulated, and is required for G1-S
progression. Cancer Res. 70:3329–3339. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
McCann AP, Smyth P, Cogo F, McDaid WJ,
Jiang L, Lin J, Evergren E, Burden RE, Van Schaeybroeck S, Scott CJ
and Burrows JF: USP17 is required for trafficking and oncogenic
signaling of mutant EGFR in NSCLC cells. Cell Commun Signal.
16:772018. View Article : Google Scholar : PubMed/NCBI
|
16
|
McFarlane C, McFarlane S, Paul I, Arthur
K, Scheaff M, Kerr K, Stevenson M, Fennell DA and Johnston JA: The
deubiquitinating enzyme USP17 is associated with non-small cell
lung cancer (NSCLC) recurrence and metastasis. Oncotarget.
4:1836–1843. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang S, Yuan J and Zheng R: Suppression
of Ubiquitin-Specific Peptidase 17 (USP17) inhibits tumorigenesis
and invasion in non-small cell lung cancer cells. Oncol Res.
24:263–269. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Graff JR, Konicek BW, McNulty AM, Wang Z,
Houck K, Allen S, Paul JD, Hbaiu A, Goode RG, Sandusky GE, et al:
Increased AKT activity contributes to prostate cancer progression
by dramatically accelerating prostate tumor growth and diminishing
p27Kip1 expression. J Biol Chem. 275:24500–24505. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Roy HK, Olusola BF, Clemens DL, Karolski
WJ, Ratashak A, Lynch HT and Smyrk TC: AKT proto-oncogene
overexpression is an early event during sporadic colon
carcinogenesis. Carcinogenesis. 23:201–205. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Saini MK and Sanyal SN: PTEN regulates
apoptotic cell death through PI3-K/Akt/GSK3β signaling pathway in
DMH induced early colon carcinogenesis in rat. Exp Mol Pathol.
93:135–146. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xue G, Restuccia DF, Lan Q, Hynx D,
Dirnhofer S, Hess D, Ruegg C and Hemmings BA: Akt/PKB-mediated
phosphorylation of Twist1 promotes tumor metastasis via mediating
cross-talk between PI3K/Akt and TGF-β signaling axes. Cancer
Discov. 2:248–259. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li Y, Yang Q, Guan H, Shi B, Ji M and Hou
P: ZNF677 suppresses Akt phosphorylation and tumorigenesis in
thyroid cancer. Cancer Res. 78:5216–5228. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tang Y, Xiao G, Chen Y and Deng Y: LncRNA
MALAT1 promotes migration and invasion of non-small-cell lung
cancer by targeting miR-206 and activating Akt/mTOR signaling.
Anticancer Drugs. 29:725–735. 2018.PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Malkomes P, Lunger I, Luetticke A,
Oppermann E, Haetscher N, Serve H, Holzer K, Bechstein WO and
Rieger MA: Selective AKT Inhibition by MK-2206 represses colorectal
cancer-initiating stem cells. Ann Surg Oncol. 23:2849–2857. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Wisinski KB, Tevaarwerk AJ, Burkard ME,
Rampurwala M, Eickhoff J, Bell MC, Kolesar JM, Flynn C and Liu G:
Phase I Study of an AKT Inhibitor (MK-2206) combined with lapatinib
in adult solid tumors followed by dose expansion in advanced HER2+
breast cancer. Clin Cancer Res. 22:2659–2667. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Agarwal E, Chaudhuri A, Leiphrakpam PD,
Haferbier KL, Brattain MG and Chowdhury S: Akt inhibitor MK-2206
promotes anti-tumor activity and cell death by modulation of AIF
and Ezrin in colorectal cancer. BMC Cancer. 14:1452014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Baek KH: Cytokine-regulated protein
degradation by the ubiquitination system. Curr Protein Pept Sci.
7:171–177. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shin JM, Yoo KJ, Kim MS, Kim D and Baek
KH: Hyaluronan- and RNA-binding deubiquitinating enzymes of USP17
family members associated with cell viability. BMC Genomics.
7:2922006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Burrows JF, Kelvin AA, McFarlane C, Burden
RE, McGrattan MJ, De la Vega M, Govender U, Quinn DJ, Dib K, Gadina
M, et al: USP17 regulates Ras activation and cell proliferation by
blocking RCE1 activity. J Biol Chem. 284:9587–9595. 2009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Song C, Liu W and Li J: USP17 is
upregulated in osteosarcoma and promotes cell proliferation,
metastasis, and epithelial-mesenchymal transition through
stabilizing SMAD4. Tumour Biol. 39:10104283177171382017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang M, He SF, Liu LL, Sun XX, Yang F, Ge
Q, Wong WK and Meng JY: Potential role of ZEB1 as a DNA repair
regulator in colorectal cancer cells revealed by cancer-associated
promoter profiling. Oncol Rep. 38:1941–1948. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kim J, D'Annibale S, Magliozzi R, Low TY,
Jansen P, Shaltiel IA, Mohammed S, Heck AJ, Medema RH and
Guardavaccaro D: USP17- and SCFβTrCP-regulated degradation of DEC1
controls the DNA damage response. Mol Cell Biol. 34:4177–4185.
2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhu J, Sun Y, Lu Y, Jiang X, Ma B, Yu L,
Zhang J, Dong X and Zhang Q: Glaucocalyxin A exerts anticancer
effect on osteosarcoma by inhibiting GLI1 nuclear translocation via
regulating PI3K/Akt pathway. Cell Death Dis. 9:7082018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Koundouros N and Poulogiannis G:
Phosphoinositide 3-Kinase/Akt Signaling and Redox Metabolism in
Cancer. Front Oncol. 8:1602018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zheng J, Zhang M, Zhang L, Ding X, Li W
and Lu S: HSPC159 promotes proliferation and metastasis by inducing
epithelial-mesenchymal transition and activating the PI3K/Akt
pathway in breast cancer. Cancer Sci. 109:2153–2163. 2018.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhong C, Chen Y, Tao B, Peng L, Peng T,
Yang X, Xia X and Chen L: LIM and SH3 protein 1 regulates cell
growth and chemosensitivity of human glioblastoma via the PI3K/AKT
pathway. BMC Cancer. 18:7222018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gong T, Cui L, Wang H, Wang H and Han N:
Knockdown of KLF5 suppresses hypoxia-induced resistance to
cisplatin in NSCLC cells by regulating HIF-1α-dependent glycolysis
through inactivation of the PI3K/Akt/mTOR pathway. J Transl Med.
16:1642018. View Article : Google Scholar : PubMed/NCBI
|
39
|
O'Reilly D, Johnson P and Buchanan PJ:
Hypoxia induced cancer stem cell enrichment promotes resistance to
androgen deprivation therapy in prostate cancer. Steroids.
152:1084972019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu W, Yu WM, Zhang J, Chan RJ, Loh ML,
Zhang Z, Bunting KD and Qu CK: Inhibition of the Gab2/PI3K/mTOR
signaling ameliorates myeloid malignancy caused by Ptpn11 (Shp2)
gain-of-function mutations. Leukemia. 31:1415–1422. 2017.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang L, Cao XX, Chen Q, Zhu TF, Zhu HG and
Zheng L: DIXDC1 targets p21 and cyclin D1 via PI3K pathway
activation to promote colon cancer cell proliferation. Cancer Sci.
100:1801–1808. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhao W, Sun Q, Yu Z, Mao S, Jin Y, Li J,
Jiang Z, Zhang Y, Chen M, Chen P, et al: MiR-320a-3p/ELF3 axis
regulates cell metastasis and invasion in non-small cell lung
cancer via PI3K/Akt pathway. Gene. 670:31–37. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhao J, Xu J and Zhang R: SRPX2 regulates
colon cancer cell metabolism by miR-192/215 via PI3K-Akt. Am J
Transl Res. 10:483–490. 2018.PubMed/NCBI
|
44
|
Zhang B, Liu L, Guan H, Wang H, Zhang Z
and Zhou P: HepG2 cell cycle related gene transcriptional profiles
are altered by a novel vanillin derivative BVAN08. J Med Discov.
2:170362017. View Article : Google Scholar
|
45
|
Deng N and Chen Y: Application of
CRISPR-Cas9 gene editing system: Non-viral delivery strategies and
improvements. J Med Discov. 3:170572018.
|