Pathogenesis of pediatric B‑cell acute lymphoblastic leukemia: Molecular pathways and disease treatments (Review)
- Authors:
- Fang‑Liang Huang
- En‑Chih Liao
- Chia‑Ling Li
- Chung‑Yang Yen
- Sheng‑Jie Yu
-
Affiliations: Children's Medical Center, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C., Department of Medicine, Mackay Medical College, Sanzhi, New Taipei 252, Taiwan, R.O.C., Department of Dermatology, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C., Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Zuoying, Kaohsiung 813, Taiwan, R.O.C. - Published online on: May 4, 2020 https://doi.org/10.3892/ol.2020.11583
- Pages: 448-454
-
Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Shafat MS, Gnaneswaran B, Bowles KM and Rushworth SA: The bone marrow microenvironment-Home of the leukemic blasts. Blood Rev. 31:277–286. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sarvaiya PJ, Schwartz JR, Hernandez CP, Rodriguez PC and Vedeckis WV: Role of c-Myb in the survival of pre B-cell acute lymphoblastic leukemia and leukemogenesis. Am J Hematol. 87:969–976. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chokkalingam AP, Metayer C, Scelo G, Chang JS, Schiffman J, Urayama KY, Ma X, Hansen HM, Feusner JH, Barcellos LF, et al: Fetal growth and body size genes and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control. 23:1577–1585. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu YF, Wang BY, Zhang WN, Huang JY, Li BS, Zhang M, Jiang L, Li JF, Wang MJ, Dai YJ, et al: Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine. 8:173–183. 2016. View Article : Google Scholar : PubMed/NCBI | |
Consolaro F, Basso G, Ghaem-Magami S, Lam EW and Viola G: FOXM1 is overexpressed in B-acute lymphoblastic leukemia (B-ALL) and its inhibition sensitizes B-ALL cells to chemotherapeutic drugs. Int J Oncol. 47:1230–1240. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhu S, Zhang G and Liu S: Inhibition of autophagy enhances the anticancer activity of bortezomib in B-cell acute lymphoblastic leukemia cells. Am J Cancer Res. 5:639–650. 2015.PubMed/NCBI | |
Tran TH, Harris MH, Nguyen JV, Blonquist TM, Stevenson KE, Stonerock E, Asselin BL, Athale UH, Clavell LA, Cole PD, et al: Prognostic impact of kinase-activating fusions and IKZF1 deletions in pediatric high-risk B-lineage acute lymphoblastic leukemia. Blood Adv. 2:529–533. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, You MJ, Young KH, Lin P, Lu G, Medeiros LJ and Bueso-Ramos CE: Advances in the molecular pathobiology of B-lymphoblastic leukemia. Hum Pathol. 43:1347–1362. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zuckerman T and Rowe JM: Pathogenesis and prognostication in acute lymphoblastic leukemia. F1000Prime Rep. 6:592014. View Article : Google Scholar : PubMed/NCBI | |
Bowman RL, Busque L and Levine RL: Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell. 22:157–170. 2018. View Article : Google Scholar : PubMed/NCBI | |
Morales-Sánchez A and Fuentes-Panana EM: Infectious etiology of childhood acute lymphoblastic leukemia, hypotheses and evidence. In: Clinical Epidemiology of Acute Lymphoblastic Leukemia: From the Molecules to the Clinic. Mejia-Arangure JM: InTech Rijeka; Croatia: pp. 19–39. 2013 | |
Schindler JW, Van Buren D, Foudi A, Krejci O, Qin J, Orkin SH and Hock H: TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. Cell Stem Cell. 5:43–53. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER and Greaves M: Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA. 95:4584–4588. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF and Hickstein DD: TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 103:15166–15171. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jan M and Majeti R: Clonal evolution of acute leukemia genomes. Oncogene. 32:135–140. 2013. View Article : Google Scholar : PubMed/NCBI | |
El Fakih R, Jabbour E, Ravandi F, Hassanein M, Anjum F, Ahmed S and Kantarjian H: Current paradigms in the management of Philadelphia chromosome positive acute lymphoblastic leukemia in adults. Am J Hematol. 93:286–295. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thomas DA, Faderl S, Cortes J, O'Brien S, Giles FJ, Kornblau SM, Garcia-Manero G, Keating MJ, Andreeff M, Jeha S, et al: Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood. 103:4396–4407. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cilloni D and Saglio G: Molecular pathways: BCR-ABL. Clin Cancer Res. 18:930–937. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ho WC, Pikor L, Gao Y, Elliott BE and Greer PA: Calpain 2 regulates Akt-FoxO-p27(Kip1) protein signaling pathway in mammary carcinoma. J Biol Chem. 287:15458–15465. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mantamadiotis T: Towards targeting PI3K-dependent regulation of gene expression in brain cancer. Cancers (Basel). 9(pii): E602017. View Article : Google Scholar : PubMed/NCBI | |
Schotte D, De Menezes RX, Akbari Moqadam F, Khankahdani LM, Lange-Turenhout E, Chen C, Pieters R and Den Boer ML: MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica. 96:703–711. 2011. View Article : Google Scholar : PubMed/NCBI | |
Deininger MW, Vieira SA, Parada Y, Banerji L, Lam EW, Peters G, Mahon FX, Köhler T, Goldman JM and Melo JV: Direct relation between BCR-ABL tyrosine kinase activity and cyclin D2 expression in lymphoblasts. Cancer Res. 61:8005–8013. 2001.PubMed/NCBI | |
Parada Y, Banerji L, Glassford J, Lea NC, Collado M, Rivas C, Lewis JL, Gordon MY, Thomas NS and Lam EW: BCR-ABL and interleukin 3 promote haematopoietic cell proliferation and survival through modulation of cyclin D2 and p27Kip1 expression. J Biol Chem. 276:23572–23580. 2001. View Article : Google Scholar : PubMed/NCBI | |
Firtina S, Sayitoglu M, Hatirnaz O, Erbilgin Y, Oztunc C, Cinar S, Yildiz I, Celkan T, Anak S, Unuvar A, et al: Evaluation of PAX5 gene in the early stages of leukemic B cells in the childhood B cell acute lymphoblastic leukemia. Leuk Res. 36:87–92. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tiacci E, Pileri S, Orleth A, Pacini R, Tabarrini A, Frenguelli F, Liso A, Diverio D, Lo-Coco F and Falini B: PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myelogenous leukemia. Cancer Res. 64:7399–7404. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schinnerl D, Fortschegger K, Kauer M, Marchante JR, Kofler R, Den Boer ML and Strehl S: The role of the Janus-faced transcription factor PAX5-JAK2 in acute lymphoblastic leukemia. Blood. 125:1282–1291. 2015. View Article : Google Scholar : PubMed/NCBI | |
Irving J, Matheson E, Minto L, Blair H, Case M, Halsey C, Swidenbank I, Ponthan F, Kirschner-Schwabe R, Groeneveld-Krentz S, et al: Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood. 124:3420–3430. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jerchel IS, Hoogkamer AQ, Ariës IM, Steeghs EMP, Boer JM, Besselink NJM, Boeree A, van de Ven C, de Groot-Kruseman HA, de Haas V, et al: RAS pathway mutations as a predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia. Leukemia. 32:931–940. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jones CL, Gearheart CM, Fosmire S, Delgado-Martin C, Evensen NA, Bride K, Waanders AJ, Pais F, Wang J, Bhatla T, et al: MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood. 126:2202–2212. 2015. View Article : Google Scholar : PubMed/NCBI | |
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, et al: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 1773:1263–1284. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wang J, Liu Y, Sidik H, Young KH, Lodish HF and Fleming MD: Oncogenic Kras-induced leukemogeneis: Hematopoietic stem cells as the initial target and lineage-specific progenitors as the potential targets for final leukemic transformation. Blood. 113:1304–1314. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shu XO, Perentesis JP, Wen W, Buckley JD, Boyle E, Ross JA and Robison LL; Children's Oncology Group, : Parental exposure to medications and hydrocarbons and ras mutations in children with acute lymphoblastic leukemia: A report from the Children's Oncology Group. Cancer Epidemiol Biomarkers Prev. 13:1230–1235. 2004.PubMed/NCBI | |
Al-Kzayer LF, Sakashita K, Al-Jadiry MF, Al-Hadad SA, Ghali HH, Uyen Le TN, Liu T, Matsuda K, Abdulkadhim JM, Al-Shujairi TA, et al: Analysis of KRAS and NRAS Gene Mutations in Arab Asian Children With Acute Leukemia: High Frequency of RAS Mutations in Acute Lymphoblastic Leukemia. Pediatr Blood Cancer. 62:2157–2161. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zeng J and Shen K: PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet. 290:1067–1078. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu MH, Lee TH, Lee HP, Li TM, Lee IT, Shieh PC and Tang CH: Kuei-Lu-Er-Xian-Jiao extract enhances BMP-2 production in osteoblasts. Biomedicine (Taipei). 7:22017. View Article : Google Scholar : PubMed/NCBI | |
Toosi B, Zaker F, Alikarami F, Kazemi A and Teremmahi Ardestanii M: VS-5584 as a PI3K/mTOR inhibitor enhances apoptotic effects of subtoxic dose arsenic trioxide via inhibition of NF-κB activity in B cell precursor-acute lymphoblastic leukemia. Biomed Pharmacother. 102:428–437. 2018. View Article : Google Scholar : PubMed/NCBI | |
Morishita N, Tsukahara H, Chayama K, Ishida T, Washio K, Miyamura T, Yamashita N, Oda M and Morishima T: Activation of Akt is associated with poor prognosis and chemotherapeutic resistance in pediatric B-precursor acute lymphoblastic leukemia. Pediatr Blood Cancer. 59:83–89. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sanchez VE, Nichols C, Kim HN, Gang EJ and Kim YM: Targeting PI3K signaling in acute lymphoblastic leukemia. Int J Mol Sci. 20(pii): E4122019. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Mallampati S, Sun B, Zhang J, Kim SB, Lee JS, Gong Y, Cai Z and Sun X: Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett. 333:9–17. 2013. View Article : Google Scholar : PubMed/NCBI | |
Evangelisti C, Cappellini A, Oliveira M, Fragoso R, Barata JT, Bertaina A, Locatelli F, Simioni C, Neri LM, Chiarini F, et al: Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia. J Cell Physiol. 233:1796–1811. 2018. View Article : Google Scholar : PubMed/NCBI | |
Silveira AB, Laranjeira AB, Rodrigues GO, Leal PC, Cardoso BA, Barata JT, Yunes RA, Zanchin NI, Brandalise SR and Yunes JA: PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia. Oncotarget. 6:13105–13118. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Beato M, Sánchez-Aguilera A and Piris MA: Cell cycle deregulation in B-cell lymphomas. Blood. 101:1220–1235. 2003. View Article : Google Scholar : PubMed/NCBI | |
Huang MM and Zhu J: The regulation of normal and leukemic hematopoietic stem cells by niches. Cancer Microenviron. 5:295–305. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Xue K, Li Z, Zheng W, Dong W, Song J, Sun S, Ma T and Li W: c-Myc regulates the CDK1/cyclin B1 dependentG2/M cell cycle progression by histone H4 acetylation in Raji cells. Int J Mol Med. 41:3366–3378. 2018.PubMed/NCBI | |
Ren Y, Bi C, Zhao X, Lwin T, Wang C, Yuan J, Silva AS, Shah BD, Fang B, Li T, et al: PLK1 stabilizes a MYC-dependent kinase network in aggressive B cell lymphomas. J Clin Invest. 128:5517–5530. 2018. View Article : Google Scholar : PubMed/NCBI | |
Slack GW and Gascoyne RD: MYC and aggressive B-cell lymphomas. Adv Anat Pathol. 18:219–228. 2011. View Article : Google Scholar : PubMed/NCBI | |
Du W, Zhou Y, Pike S and Pang Q: NPM phosphorylation stimulates Cdk1, overrides G2/M checkpoint and increases leukemic blasts in mice. Carcinogenesis. 31:302–310. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rahmani M, Talebi M, Hagh MF, Feizi AAH and Solali S: Aberrant DNA methylation of key genes and Acute Lymphoblastic Leukemia. Biomed Pharmacother. 97:1493–1500. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vasconcelos GM, Christensen BC, Houseman EA, Xiao J, Marsit CJ, Wiencke JK, Zheng S, Karagas MR, Nelson HH, Wrensch MR, et al: History of Parvovirus B19 infection is associated with a DNA methylation signature in childhood acute lymphoblastic leukemia. Epigenetics. 6:1436–1443. 2011. View Article : Google Scholar : PubMed/NCBI | |
Timms JA, Relton CL, Rankin J, Strathdee G and McKay JA: DNA methylation as a potential mediator of environmental risks in the development of childhood acute lymphoblastic leukemia. Epigenomics. 8:519–536. 2016. View Article : Google Scholar : PubMed/NCBI | |
Milne E, Laurvick CL, Blair E, Bower C and de Klerk N: Fetal growth and acute childhood leukemia: Looking beyond birth weight. Am J Epidemiol. 166:151–159. 2007. View Article : Google Scholar : PubMed/NCBI | |
Groves FD, Watkins BT, Roberts DJ, Tucker TC, Shen T and Flood TJ: Birth weight and risk of childhood acute lymphoblastic leukemia in arizona, Illinois, and kentucky. South Med J. 111:579–584. 2018. View Article : Google Scholar : PubMed/NCBI | |
Robison LL, Codd M, Gunderson P, Neglia JP, Smithson WA and King FL: Birth weight as a risk factor for childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol. 4:63–72. 1987. View Article : Google Scholar : PubMed/NCBI | |
Hellström A, Ley D, Hansen-Pupp I, Hallberg B, Ramenghi LA, Löfqvist C, Smith LE and Hard AL: Role of insulinlike growth factor 1 in fetal development and in the early postnatal life of premature infants. Am J Perinatol. 33:1067–1071. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stratikopoulos E, Szabolcs M, Dragatsis I, Klinakis A and Efstratiadis A: The hormonal action of IGF1 in postnatal mouse growth. Proc Natl Acad Sci USA. 105:19378–19383. 2008. View Article : Google Scholar : PubMed/NCBI | |
Khalade A, Jaakkola MS, Pukkala E and Jaakkola JJ: Exposure to benzene at work and the risk of leukemia: A systematic review and meta-analysis. Environ Health. 9:312010. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Zhang Y, Guliaev AB, Shen H, Hang B, Singer B and Wang Z: The p-benzoquinone DNA adducts derived from benzene are highly mutagenic. DNA Repair (Amst). 4:1399–1409. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mansell E, Zareian N, Malouf C, Kapeni C, Brown N, Badie C, Baird D, Lane J, Ottersbach K, Blair A and Case CP: DNA damage signalling from the placenta to foetal blood as a potential mechanism for childhood leukaemia initiation. Sci Rep. 9:43702019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zhang S, Li Z, Zhu J, Bi Y, Bai Y and Wang H: Maternal benzene exposure during pregnancy and risk of childhood acute lymphoblastic leukemia: A meta-analysis of epidemiologic studies. PLoS One. 9:e1104662014. View Article : Google Scholar : PubMed/NCBI | |
Cooper SL and Brown PA: Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin North Am. 62:61–73. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, Ribeiro RC, Rubnitz JE, Raimondi SC, Onciu M, et al: Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 360:2730–2741. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tsurusawa M, Shimomura Y, Asami K, Kikuta A, Watanabe A, Horikoshi Y, Matsushita T, Kanegane H, Ohta S, Iwai A, et al: Long-term results of the Japanese childhood cancer and leukemia study group studies 811, 841, 874 and 911 on childhood acute lymphoblastic leukemia. Leukemia. 24:335–344. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pui CH, Pei D, Sandlund JT, Ribeiro RC, Rubnitz JE, Raimondi SC, Onciu M, Campana D, Kun LE, Jeha S, et al: Long-term results of St Jude total therapy studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia. 24:371–382. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jabbour EJ, Faderl S and Kantarjian HM: Adult acute lymphoblastic leukemia. Mayo Clin Proc. 80:1517–1527. 2005. View Article : Google Scholar : PubMed/NCBI | |
Winter SS, Holdsworth MT, Devidas M, Raisch DW, Chauvenet A, Ravindranath Y, Ducore JM and Amylon MD: Antimetabolite-based therapy in childhood T-cell acute lymphoblastic leukemia: A report of POG study 9296. Pediatr Blood Cancer. 46:179–186. 2006. View Article : Google Scholar : PubMed/NCBI | |
Seymour JF, Grigg AP, Szer J and Fox RM: Cisplatin, fludarabine, and cytarabine: A novel, pharmacologically designed salvage therapy for patients with refractory, histologically aggressive or mantle cell non-Hodgkin's lymphoma. Cancer. 94:585–593. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kato M and Manabe A: Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr Int. 60:4–12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Narayanan S and Shami PJ: Treatment of acute lymphoblastic leukemia in adults. Crit Rev Oncol Hematol. 81:94–102. 2012. View Article : Google Scholar : PubMed/NCBI | |
Terwilliger T and Abdul-Hay M: Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 7:e5772017. View Article : Google Scholar : PubMed/NCBI | |
Baraz R, Cisterne A, Saunders PO, Hewson J, Thien M, Weiss J, Basnett J, Bradstock KF and Bendall LJ: mTOR inhibition by everolimus in childhood acute lymphoblastic leukemia induces caspase-independent cell death. PLoS One. 9:e1024942014. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Banerjee S, Acosta EP, Lillard JW and Singh R: Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget. 8:17216–17228. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ge J, Liu Y, Li Q, Guo X, Gu L, Ma ZG and Zhu YP: Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK. Biomed Environ Sci. 26:902–911. 2013.PubMed/NCBI | |
Cai Y, Xia Q, Su Q, Luo R, Sun Y, Shi Y and Jiang W: mTOR inhibitor RAD001 (Everolimus) induces apoptotic, not autophagic cell death, in human nasopharyngeal carcinoma cells. Int J Mol Med. 31:904–912. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ciombor KK and Bekaii-Saab T: Selumetinib for the treatment of cancer. Expert Opin Investig Drugs. 24:111–123. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kerstjens M, Driessen EM, Willekes M, Pinhancos SS, Schneider P, Pieters R and Stam RW: MEK inhibition is a promising therapeutic strategy for MLL-rearranged infant acute lymphoblastic leukemia patients carrying RAS mutations. Oncotarget. 8:14835–14846. 2017. View Article : Google Scholar : PubMed/NCBI | |
Piya S, Andreeff M and Borthakur G: Targeting autophagy to overcome chemoresistance in acute myleogenous leukemia. Autophagy. 13:214–215. 2017. View Article : Google Scholar : PubMed/NCBI | |
Takahashi H, Inoue J, Sakaguchi K, Takagi M, Mizutani S and Inazawa J: Autophagy is required for cell survival under L-asparaginase-induced metabolic stress in acute lymphoblastic leukemia cells. Oncogene. 36:4267–4276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Takahashi H, Inoue J, Sakaguchi K, Takagi M, Mizutani S and Inazawa J: Autophagy inhibition sensitizes acute lymphoblastic leukemia cells to L-asparaginase. Blood. 126:3772. 2015. View Article : Google Scholar | |
Sakura H, Kanei-Ishii C, Nagase T, Nakagoshi H, Gonda TJ and Ishii S: Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. Proc Natl Acad Sci USA. 86:5758–5762. 1989. View Article : Google Scholar : PubMed/NCBI | |
Tanaka Y, Nomura T and Ishii S: Two regions in c-myb proto-oncogene product negatively regulating its DNA-binding activity. FEBS Lett. 413:162–168. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y and Ness SA: Myb proteins: Angels and demons in normal and transformed cells. Front Biosci (Landmark Ed). 16:1109–1131. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lv M, Wang Y, Wu W, Yang S, Zhu H, Hu B, Chen Y, Shi C, Zhang Y, Mu Q and Ouyang G: CMyc inhibitor 10058F4 increases the efficacy of dexamethasone on acute lymphoblastic leukaemia cells. Mol Med Rep. 18:421–428. 2018.PubMed/NCBI | |
Liu X, Xu Y, Han L and Yi Y: Reassessing the Potential of Myb-targeted Anti-cancer Therapy. J Cancer. 9:1259–1266. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mitra P: Transcription regulation of MYB: A potential and novel therapeutic target in cancer. Ann Transl Med. 6:4432018. View Article : Google Scholar : PubMed/NCBI | |
Grobbelaar C and Ford AM: The Role of MicroRNA in paediatric acute lymphoblastic leukaemia: Challenges for diagnosis and therapy. J Oncol. 2019:89414712019. View Article : Google Scholar : PubMed/NCBI | |
Nakase K, Kita K, Miwa H, Nishii K, Shikami M, Tanaka I, Tsutani H, Ueda T, Nasu K, Kyo T, et al: Clinical and prognostic significance of cytokine receptor expression in adult acute lymphoblastic leukemia: Interleukin-2 receptor alpha-chain predicts a poor prognosis. Leukemia. 21:326–332. 2007. View Article : Google Scholar : PubMed/NCBI | |
Duyu M, Durmaz B, Gunduz C, Vergin C, Yilmaz Karapinar D, Aksoylar S, Kavakli K, Cetingul N, Irken G, Yaman Y, et al: Prospective evaluation of whole genome microRNA expression profiling in childhood acute lymphoblastic leukemia. Biomed Res Int. 2014:9675852014. View Article : Google Scholar : PubMed/NCBI | |
Yoshida N, Oda M, Kuroda Y, Katayama Y, Okikawa Y, Masunari T, Fujiwara M, Nishisaka T, Sasaki N, Sadahira Y, et al: Clinical significance of sIL-2R levels in B-cell lymphomas. PLoS One. 8:e787302013. View Article : Google Scholar : PubMed/NCBI | |
Nakase K, Kita K, Kyo T, Tsuji K and Katayama N: High serum levels of soluble interleukin-2 receptor in acute myeloid leukemia: Correlation with poor prognosis and CD4 expression on blast cells. Cancer Epidemiol. 36:e306–e309. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, Szlachta K, Dong L, Liu Y, Yang F, et al: Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood. 135:41–55. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tomiyasu H, Watanabe M, Sugita K, Goto-Koshino Y, Fujino Y, Ohno K, Sugano S and Tsujimoto H: Regulations of ABCB1 and ABCG2 expression through MAPK pathways in acute lymphoblastic leukemia cell lines. Anticancer Res. 33:5317–5323. 2013.PubMed/NCBI | |
Xie J, Jin B, Li DW, Shen B, Cong N, Zhang TZ and Dong P: ABCG2 regulated by MAPK pathways is associated with cancer progression in laryngeal squamous cell carcinoma. Am J Cancer Res. 4:698–709. 2014.PubMed/NCBI | |
El Azreq MA, Naci D and Aoudjit F: Collagen/β1 integrin signaling up-regulates the ABCC1/MRP-1 transporter in an ERK/MAPK-dependent manner. Mol Biol Cell. 23:3473–3484. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kourti M, Vavatsi N, Gombakis N, Sidi V, Tzimagiorgis G, Papageorgiou T, Koliouskas D and Athanassiadou F: Expression of multidrug resistance 1 (MDR1), multidrug resistance-related protein 1 (MRP1), lung resistance protein (LRP), and breast cancer resistance protein (BCRP) genes and clinical outcome in childhood acute lymphoblastic leukemia. Int J Hematol. 86:166–173. 2007. View Article : Google Scholar : PubMed/NCBI | |
Baudis M, Prima V, Tung YH and Hunger SP: ABCB1 over-expression and drug-efflux in acute lymphoblastic leukemia cell lines with t(17;19) and E2A-HLF expression. Pediatr Blood Cancer. 47:757–764. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Mack P and Wong KP: Glutathione-related mechanisms in cellular resistance to anticancer drugs. Int J Oncol. 12:871–882. 1998.PubMed/NCBI | |
Tsai SY, Sun NK, Lu HP, Cheng ML and Chao CC: Involvement of reactive oxygen species in multidrug resistance of a vincristine-selected lymphoblastoma. Cancer Sci. 98:1206–1214. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Du S, Du Y, Ren J, Ying G and Yan Z: Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis. J Neurochem. 144:93–104. 2018. View Article : Google Scholar : PubMed/NCBI |