Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity (Review)
- Authors:
- Yinliang Lu
- Baocai Liu
- Ying Liu
- Xinyue Yu
- Guanghui Cheng
-
Affiliations: Department of Radiation Oncology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China - Published online on: May 28, 2020 https://doi.org/10.3892/ol.2020.11684
- Pages: 993-1000
-
Copyright: © Lu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Alicikus ZA, Yamada Y, Zhang Z, Pei X, Hunt M, Kollmeier M, Cox B and Zelefsky MJ: Ten-year outcomes of high-dose, intensity-modulated radiotherapy for localized prostate cancer. Cancer. 117:1429–1437. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI | |
Barker HE, Paget JT, Khan AA and Harrington KJ: The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer. 15:409–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hawkins AJ, Golding SE, Khalil A and Valerie K: DNA double-strand break-induced pro-survival signaling. Radiother Oncol. 101:13–17. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ding M, Zhang E, He R and Wang X: Newly developed strategies for improving sensitivity to radiation by targeting signal pathways in cancer therapy. Cancer Sci. 104:1401–1410. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ciccarelli C, Di Rocco A, Gravina GL, Mauro A, Festuccia C, Del Fattore A, Berardinelli P, De Felice F, Musio D, Bouché M, et al: Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo. J Cancer Res Clin Oncol. 144:1685–1699. 2018. View Article : Google Scholar : PubMed/NCBI | |
Morris ZS and Harari PM: Interaction of radiation therapy with molecular targeted agents. J Clin Oncol. 32:2886–2893. 2014. View Article : Google Scholar : PubMed/NCBI | |
Roberts PJ and Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI | |
Neuzillet C, Tijeras-Raballand A, De Mestier L, Cros J, Faivre S and Raymond E: MEK in cancer and cancer therapy. Pharmacol Ther. 141:160–171. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kidger AM, Sipthorp J and Cook SJ: ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther. 187:45–60. 2018. View Article : Google Scholar : PubMed/NCBI | |
Samatar AA and Poulikakos PI: Targeting RAS-ERK signalling in cancer: Promises and challenges. Nat Rev Drug Discov. 13:928–942. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bonner JA, Vroman BT, Christianson TJ and Karnitz LM: Ionizing radiation-induced MEK and Erk activation does not enhance survival of irradiated human squamous carcinoma cells. Int J Radiat Oncol Biol Phys. 42:921–925. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mebratu Y and Tesfaigzi Y: How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 8:1168–1175. 2009. View Article : Google Scholar : PubMed/NCBI | |
Teixeiro E and Daniels MA: ERK and cell death: ERK location and T cell selection. FEBS J. 277:30–38. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cagnol S and Chambard JC: ERK and cell death: Mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J. 277:2–21. 2010. View Article : Google Scholar : PubMed/NCBI | |
Keshet Y and Seger R: The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol. 661:3–38. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI | |
De Luca A, Maiello MR, D'alessio A, Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 16 (Suppl 2):S17–S27. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ramos JW: The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol. 40:2707–2719. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yoon S and Seger R: The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors. 24:21–44. 2006. View Article : Google Scholar : PubMed/NCBI | |
Carlson SM, Chouinard CR, Labadorf A, Lam CJ, Schmelzle K, Fraenkel E and White FM: Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal. 4:rs112011. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Liu WZ, Liu T, Feng X, Yang N and Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 35:600–604. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim EK and Choi EJ: Compromised MAPK signaling in human diseases: An update. Arch Toxicol. 89:867–882. 2015. View Article : Google Scholar : PubMed/NCBI | |
Balmanno K and Cook SJ: Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 16:368–377. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sakai N, Wada T, Furuichi K, Iwata Y, Yoshimoto K, Kitagawa K, Kokubo S, Kobayashi M, Hara A, Yamahana J, et al: Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis. 45:54–65. 2005. View Article : Google Scholar : PubMed/NCBI | |
DuShane JK, Wilczek MP, Mayberry CL and Maginnis MS: ERK is a critical regulator of JC polyomavirus infection. J Virol. 92:e01529–17. 2018. View Article : Google Scholar : PubMed/NCBI | |
Muslin AJ: MAPK signalling in cardiovascular health and disease: Molecular mechanisms and therapeutic targets. Clin Sci (Lond). 115:203–218. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh BK and Singh SP: The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox Res. 35:775–795. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-I S, Wada H, Fujimoto J and Kohno M: Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene. 18:813–822. 1999. View Article : Google Scholar : PubMed/NCBI | |
Park HS, You GE, Yang KH, Kim JY, An S, Song JY, Lee SJ, Lim YK and Nam SY: Role of AKT and ERK pathways in controlling sensitivity to ionizing radiation and adaptive response induced by low-dose radiation in human immune cells. Eur J Cell Biol. 94:653–660. 2015. View Article : Google Scholar : PubMed/NCBI | |
Corn BW, Kovner F, Bek S, Wexler I, Lifschits B and Seger R: ERK signaling in colorectal cancer: A preliminary report on the expression of phosphorylated ERK and the effects of radiation therapy. Am J Clin Oncol. 31:255–258. 2008. View Article : Google Scholar : PubMed/NCBI | |
Panganiban RA, Snow AL and Day RM: Mechanisms of radiation toxicity in transformed and non-transformed cells. Int J Mol Sci. 14:15931–15958. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dent P, Yacoub A, Fisher PB, Hagan MP and Grant S: MAPK pathways in radiation responses. Oncogene. 22:5885–5896. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Black CP and Cowan KH: Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene. 26:4689–4698. 2007. View Article : Google Scholar : PubMed/NCBI | |
Williams TM, Flecha AR, Keller P, Ram A, Karnak D, Galbán S, Galbán CJ, Ross BD, Lawrence TS, Rehemtulla A and Sebolt-Leopold J: Cotargeting MAPK and PI3K signaling with concurrent radiotherapy as a strategy for the treatment of pancreatic cancer. Mol Cancer Ther. 11:1193–1202. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cuneo KC, Geng L, Fu A, Orton D, Hallahan DE and Chakravarthy AB: SU11248 (sunitinib) sensitizes pancreatic cancer to the cytotoxic effects of ionizing radiation. Int J Radiat Oncol Biol Phys. 71:873–879. 2008. View Article : Google Scholar : PubMed/NCBI | |
Carter S, Auer KL, Reardon DB, Birrer M, Fisher PB, Valerie K, Schmidt-Ullrich R, Mikkelsen R and Dent P: Inhibition of the mitogen activated protein (MAP) kinase cascade potentiates cell killing by low dose ionizing radiation in A431 human squamous carcinoma cells. Oncogene. 16:2787–2796. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hein AL, Ouellette MM and Yan Y: Radiation-induced signaling pathways that promote cancer cell survival (review). Int J Oncol. 45:1813–1819. 2014. View Article : Google Scholar : PubMed/NCBI | |
Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, et al: Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 118:3065–3074. 2008.PubMed/NCBI | |
Cho JH, Hong WG, Jung YJ, Lee J, Lee E, Hwang SG, Um HD and Park JK: Γ-Ionizing radiation-induced activation of the EGFR-p38/ERK-STAT3/CREB-1-EMT pathway promotes the migration/invasion of non-small cell lung cancer cells and is inhibited by podophyllotoxin acetate. Tumour Biol. 37:7315–7325. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee HC, An S, Lee H, Woo SH, Jin HO, Seo SK, Choe TB, Yoo DH, Lee SJ, Hong YJ, et al: Activation of epidermal growth factor receptor and its downstream signaling pathway by nitric oxide in response to ionizing radiation. Mol Cancer Res. 6:996–1002. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sambade MJ, Camp JT, Kimple RJ, Sartor CI and Shields JM: Mechanism of lapatinib-mediated radiosensitization of breast cancer cells is primarily by inhibition of the Raf>MEK>ERK mitogen-activated protein kinase cascade and radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK. Radiother Oncol. 93:639–644. 2009. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Qiao L, Su ZZ, Hinman D, Willoughby K, McKinstry R, Yacoub A, Duigou GJ, Young CS, Grant S, et al: Ionizing radiation modulates vascular endothelial growth factor (VEGF) expression through multiple mitogen activated protein kinase dependent pathways. Oncogene. 20:3266–3280. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Ma N, Yao W, Li S and Ren Z: RAD51 is a potential marker for prognosis and regulates cell proliferation in pancreatic cancer. Cancer Cell Int. 19:3562019. View Article : Google Scholar : PubMed/NCBI | |
King HO, Brend T, Payne HL, Wright A, Ward TA, Patel K, Egnuni T, Stead LF, Patel A, Wurdak H and Short SC: RAD51 is a selective DNA repair target to radiosensitize glioma stem cells. Stem Cell Reports. 8:125–139. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chowdhury P, Dey P, De D and Ghosh U: Gamma ray-induced in vitro cell migration via EGFR/ERK/Akt/p38 activation is prevented by olaparib pretreatment. Int J Radiat Biol. 96:651–660. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee YJ, Soh JW, Dean NM, Cho CK, Kim TH, Lee SJ and Lee YS: Protein kinase Cdelta overexpression enhances radiation sensitivity via extracellular regulated protein kinase 1/2 activation, abolishing the radiation-induced G(2)-M arrest. Cell Growth Differ. 13:237–246. 2002.PubMed/NCBI | |
Singh S, Upadhyay AK, Ajay AK and Bhat MK: p53 regulates ERK activation in carboplatin induced apoptosis in cervical carcinoma: A novel target of p53 in apoptosis. FEBS Lett. 581:289–295. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cheng G, Kong D, Hou X, Liang B, He M, Liang N, Ma S and Liu X: The tumor suppressor, p53, contributes to radiosensitivity of lung cancer cells by regulating autophagy and apoptosis. Cancer Biother Radiopharm. 28:153–159. 2013. View Article : Google Scholar : PubMed/NCBI | |
Premkumar K and Shankar BS: Involvement of MAPK signalling in radioadaptive response in BALB/c mice exposed to low dose ionizing radiation. Int J Radiat Biol. 92:249–262. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI and Kang HS: Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer. 16:102017. View Article : Google Scholar : PubMed/NCBI | |
Kaczanowski S: Apoptosis: Its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol. 13:0310012016. View Article : Google Scholar : PubMed/NCBI | |
Gerl R and Vaux DL: Apoptosis in the development and treatment of cancer. Carcinogenesis. 26:263–270. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wong RS: Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011. View Article : Google Scholar : PubMed/NCBI | |
Pistritto G, Trisciuoglio D, Ceci C, Garufi A and D'Orazi G: Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 8:603–619. 2016. View Article : Google Scholar : PubMed/NCBI | |
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Zhang R, Konishi T and Wang J: Upregulation of NRF2 through autophagy/ERK 1/2 ameliorates ionizing radiation induced cell death of human osteosarcoma U-2 OS. Mutat Res. 813:10–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boucher MJ, Morisset J, Vachon PH, Reed JC, Lainé J and Rivard N: MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem. 79:355–369. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kurland JF, Voehringer DW and Meyn RE: The MEK/ERK pathway acts upstream of NF kappa B1 (p50) homodimer activity and Bcl-2 expression in a murine B-cell lymphoma cell line. MEK inhibition restores radiation-induced apoptosis. J Biol Chem. 278:32465–32470. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee N and Walker GC: Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 58:235–263. 2017. View Article : Google Scholar : PubMed/NCBI | |
Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF and Valerie K: Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther. 8:730–738. 2009. View Article : Google Scholar : PubMed/NCBI | |
Valerie K and Povirk LF: Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 22:5792–5812. 2003. View Article : Google Scholar : PubMed/NCBI | |
Meyn RE, Munshi A, Haymach JV, Milas L and Ang KK: Receptor signaling as a regulatory mechanism of DNA repair. Radiother Oncol. 92:316–322. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yacoub A, McKinstry R, Hinman D, Chung T, Dent P and Hagan MP: Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res. 159:439–452. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yacoub A, Park JS, Qiao L, Dent P and Hagan MP: MAPK dependence of DNA damage repair: Ionizing radiation and the induction of expression of the DNA repair genes XRCC1 and ERCC1 in DU145 human prostate carcinoma cells in a MEK1/2 dependent fashion. Int J Radiat Biol. 77:1067–1078. 2001. View Article : Google Scholar : PubMed/NCBI | |
Engeland K: Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 25:114–132. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao H and Piwnica-Worms H: ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol. 21:4129–4139. 2001. View Article : Google Scholar : PubMed/NCBI | |
Abbott DW and Holt JT: Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J Biol Chem. 274:2732–2742. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Black CP, Cao PT, Haferbier JL, Kolb RH, Spieker RS, Ristow AM and Cowan KH: Gamma-irradiation-induced DNA damage checkpoint activation involves feedback regulation between extracellular signal-regulated kinase 1/2 and BRCA1. Cancer Res. 68:5113–5121. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dossett LA, Kudchadkar RR and Zager JS: BRAF and MEK inhibition in melanoma. Expert Opin Drug Saf. 14:559–570. 2015. View Article : Google Scholar : PubMed/NCBI | |
Caunt CJ, Sale MJ, Smith PD and Cook SJ: MEK1 and MEK2 inhibitors and cancer therapy: The long and winding road. Nat Rev Cancer. 15:577–592. 2015. View Article : Google Scholar : PubMed/NCBI | |
Affolter A, Muller MF, Sommer K, Stenzinger A, Zaoui K, Lorenz K, Wolf T, Sharma S, Wolf J, Perner S, et al: Targeting irradiation-induced mitogen-activated protein kinase activation in vitro and in an ex vivo model for human head and neck cancer. Head Neck. 38 (Suppl 1):E2049–E2061. 2016. View Article : Google Scholar : PubMed/NCBI | |
Frémin C and Meloche S: From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol. 3:82010. View Article : Google Scholar : PubMed/NCBI | |
Estrada-Bernal A, Chatterjee M, Haque SJ, Yang L, Morgan MA, Kotian S, Morrell D, Chakravarti A and Williams TM: MEK inhibitor GSK1120212-mediated radiosensitization of pancreatic cancer cells involves inhibition of DNA double-strand break repair pathways. Cell Cycle. 14:3713–3724. 2015. View Article : Google Scholar : PubMed/NCBI | |
Marampon F, Gravina GL, Di Rocco A, Bonfili P, Di Staso M, Fardella C, Polidoro L, Ciccarelli C, Festuccia C, Popov VM, et al: MEK/ERK inhibitor U0126 increases the radiosensitivity of rhabdomyosarcoma cells in vitro and in vivo by downregulating growth and DNA repair signals. Mol Cancer Ther. 10:159–168. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chung EJ, Urick ME, Kurshan N, Shield W III, Asano H, Smith PD, Scroggins BS, Burkeen J and Citrin DE: MEK1/2 inhibition enhances the radiosensitivity of cancer cells by downregulating survival and growth signals mediated by EGFR ligands. Int J Oncol. 42:2028–2036. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hayes TK, Neel NF, Hu C, Gautam P, Chenard M, Long B, Aziz M, Kassner M, Bryant KL, Pierobon M, et al: Long-Term ERK inhibition in KRAS-mutant pancreatic cancer is associated with MYC degradation and senescence-like growth suppression. Cancer Cell. 29:75–89. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kroeze SG, Fritz C, Hoyer M, Lo SS, Ricardi U, Sahgal A, Stahel R, Stupp R and Guckenberger M: Toxicity of concurrent stereotactic radiotherapy and targeted therapy or immunotherapy: A systematic review. Cancer Treat Rev. 53:25–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luebker SA and Koepsell SA: Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front Oncol. 9:2682019. View Article : Google Scholar : PubMed/NCBI | |
Lito P, Rosen N and Solit DB: Tumor adaptation and resistance to RAF inhibitors. Nat Med. 19:1401–1409. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jaiswal BS, Durinck S, Stawiski EW, Yin J, Wang W, Lin E, Moffat J, Martin SE, Modrusan Z and Seshagiri S: ERK mutations and amplification confer resistance to ERK-Inhibitor therapy. Clin Cancer Res. 24:4044–4055. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hollmann CA, Owens T, Nalbantoglu J, Hudson TJ and Sladek R: Constitutive activation of extracellular signal-regulated kinase predisposes diffuse large B-cell lymphoma cell lines to CD40-mediated cell death. Cancer Res. 66:3550–3557. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP, Keyomarsi K, Yarden Y and Seger R: Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene. 20:147–155. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW and Ingram AJ: ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem. 277:12710–12717. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Dash S, Lohitesh K and Chowdhury R: The dynamic role of autophagy and MAPK signaling in determining cell fate under cisplatin stress in osteosarcoma cells. PLoS One. 12:e01792032017. View Article : Google Scholar : PubMed/NCBI | |
Martin P, Poggi MC, Chambard JC, Boulukos KE and Pognonec P: Low dose cadmium poisoning results in sustained ERK phosphorylation and caspase activation. Biochem Biophys Res Commun. 350:803–807. 2006. View Article : Google Scholar : PubMed/NCBI | |
Martin P and Pognonec P: ERK and cell death: Cadmium toxicity, sustained ERK activation and cell death. FEBS J. 277:39–46. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lin T, Mak NK and Yang MS: MAPK regulate p53-dependent cell death induced by benzo[a]pyrene: Involvement of p53 phosphorylation and acetylation. Toxicology. 247:145–153. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lee YJ, Soh JW, Jeoung DI, Cho CK, Jhon GJ, Lee SJ and Lee YS: PKC epsilon-mediated ERK1/2 activation involved in radiation-induced cell death in NIH3T3 cells. Biochim Biophys Acta. 1593:219–229. 2003. View Article : Google Scholar : PubMed/NCBI | |
Watanabe H, Kurabayashi T and Miura M: Inhibition of the extracellular signal-regulated kinase (ERK) pathway and the induction of radioresistance in rat 3Y1 cells. Int J Radiat Biol. 80:451–457. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Piperdi S and Gorlick R: Activation of the RAF/mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway mediates apoptosis induced by chelerythrine in osteosarcoma. Clin Cancer Res. 14:6396–6404. 2008. View Article : Google Scholar : PubMed/NCBI | |
Randhawa H, Kibble K, Zeng H, Moyer MP and Reindl KM: Activation of ERK signaling and induction of colon cancer cell death by piperlongumine. Toxicol In Vitro. 27:1626–1633. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Li J, Hao YH, Gao YB, Wang SM, Zhang J, Dong J, Zhou HM, Liu SC and Peng RY: Microwave-induced apoptosis and cytotoxicity of NK cells through ERK1/2 signaling. Biomed Environ Sci. 30:323–332. 2017.PubMed/NCBI | |
Han HY, Kim H, Jeong SH, Lim DS and Ryu MH: Sulfasalazine induces autophagic cell death in oral cancer cells via Akt and ERK pathways. Asian Pac J Cancer Prev. 15:6939–6944. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bastola T, An RB, Kim YC, Kim J and Seo J: Cearoin induces autophagy, ERK activation and apoptosis via ROS generation in SH-SY5Y neuroblastoma cells. Molecules. 22(pii): E2422017. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Geng J, Zheng Q, Wang L, Huang P, Tong J and Zheng S: Single high dose irradiation induces cell cycle arrest and apoptosis in human hepatocellular carcinoma cells through the Ras/Raf/MEK/ERK pathways. Int J Radiat Biol. 1–8. 2020.(Epub ahead of print). | |
Wang Z, Ma L, Su M, Zhou Y, Mao K, Li C, Peng G, Zhou C, Shen B and Dou J: Baicalin induces cellular senescence in human colon cancer cells via upregulation of DEPP and the activation of Ras/Raf/MEK/ERK signaling. Cell Death Dis. 9:2172018. View Article : Google Scholar : PubMed/NCBI | |
Brown L and Benchimol S: The involvement of MAPK signaling pathways in determining the cellular response to p53 activation: Cell cycle arrest or apoptosis. J Biol Chem. 281:3832–3840. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Patel NH, Saleh T, Cudjoe EK Jr, Alotaibi M, Wu Y, Lima S, Hawkridge AM and Gewirtz DA: Differential radiation sensitivity in p53 Wild-Type and p53-Deficient tumor cells associated with senescence but not apoptosis or (Nonprotective) Autophagy. Radiat Res. 190:538–557. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xu H, Lu Z, Yu X, Lv C, Tian Y and Sui D: Pseudo-Ginsenoside Rh2 induces A549 cells apoptosis via the Ras/Raf/ERK/p53 pathway. Exp Ther Med. 15:4916–4924. 2018.PubMed/NCBI | |
Lv C, Hong Y, Miao L, Li C, Xu G, Wei S, Wang B, Huang C and Jiao B: Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway. Cell Death Dis. 4:e9522013. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Yang Y, Ye YC, Shi QF, Chai K, Tashiro S, Onodera S and Ikejima T: Activation of ERK-p53 and ERK-mediated phosphorylation of Bcl-2 are involved in autophagic cell death induced by the c-Met inhibitor SU11274 in human lung cancer A549 cells. J Pharmacol Sci. 118:423–432. 2012. View Article : Google Scholar : PubMed/NCBI | |
Woessmann W, Chen X and Borkhardt A: Ras-mediated activation of ERK by cisplatin induces cell death independently of p53 in osteosarcoma and neuroblastoma cell lines. Cancer Chemother Pharmacol. 50:397–404. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pognonec P: ERK and cell death: Overview. FEBS J. 277:12010. View Article : Google Scholar : PubMed/NCBI | |
Wainstein E and Seger R: The dynamic subcellular localization of ERK: Mechanisms of translocation and role in various organelles. Curr Opin Cell Biol. 39:15–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cook SJ, Stuart K, Gilley R and Sale MJ: Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J. 284:4177–4195. 2017. View Article : Google Scholar : PubMed/NCBI | |
Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR, Pointer JN, Gruber SB, Su LD, Nikiforov MA, et al: Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol. 8:1053–1063. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fehrenbacher N, Bar-Sagi D and Philips M: Ras/MAPK signaling from endomembranes. Mol Oncol. 3:297–307. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shaul YD and Seger R: The MEK/ERK cascade: From signaling specificity to diverse functions. Biochim Biophys Acta. 1773:1213–1226. 2007. View Article : Google Scholar : PubMed/NCBI | |
Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P and Cheresh DA: Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol. 137:481–492. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ajenjo N, Canon E, Sanchez-Perez I, Matallanas D, León J, Perona R and Crespo P: Subcellular localization determines the protective effects of activated ERK2 against distinct apoptogenic stimuli in myeloid leukemia cells. J Biol Chem. 279:32813–32823. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maik-Rachline G, Hacohen-Lev-Ran A and Seger R: Nuclear ERK: Mechanism of translocation, substrates, and role in cancer. Int J Mol Sci. 20(pii): E11942019. View Article : Google Scholar : PubMed/NCBI | |
Huang K, Chen Y, Zhang R, Wu Y, Ma Y, Fang X and Shen S: Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 9:1572018. View Article : Google Scholar : PubMed/NCBI | |
Yeh PS, Wang W, Chang YA, Lin CJ, Wang JJ and Chen RM: Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration. Cancer Lett. 370:66–77. 2016. View Article : Google Scholar : PubMed/NCBI |