1
|
Di Stefano AL, Enciso-Mora V, Marie Y,
Desestret V, Labussière M, Boisselier B, Mokhtari K, Idbaih A,
Hoang-Xuan K, Delattre JY, et al: Association between glioma
susceptibility loci and tumour pathology defines specific molecular
etiologies. Neuro Oncol. 15:542–547. 2013. View Article : Google Scholar
|
2
|
Li G, Shen J, Cao J, Zhou G, Lei T, Sun Y,
Gao H, Ding Y, Xu W, Zhan Z, et al: Alternative splicing of human
telomerase reverse transcriptase in gliomas and its modulation
mediated by CX-5461. J Exp Clin Cancer Res. 37:782018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Parker RG, Janjan NA and Selch MT:
Malignant tumors of the central nervous system. Radiation Oncology
for Cure and Palliation. Springer; Berlin, Heidelberg: 2003,
View Article : Google Scholar
|
4
|
Fuller GN and Scheithauer BW: The 2007
revised world health organization (WHO) classification of tumours
of the central nervous system: Newly codified entities. Brain
Pathol. 17:304–307. 2010. View Article : Google Scholar
|
5
|
Theeler BJ and Groves MD: High-grade
gliomas. Curr Treat Options Neurol. 13:386–399. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ke C, Tran K, Chen Y, Di Donato AT, Yu L,
Hu Y, Linskey ME, Wang PH, Limoli CL and Zhou YH: Linking
differential radiation responses to glioma heterogeneity.
Oncotarget. 5:1657–1665. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fischer U, Struss AK, Hemmer D, Pallasch
CP, Steudel WI and Meese E: Glioma-expressed antigen 2 (GLEA2): A
novel protein that can elicit immune responses in glioblastoma
patients and some controls. Clin Exp Immunol. 126:206–213. 2010.
View Article : Google Scholar
|
8
|
Kwok HH, Poon PY, Mak KH, Zhang LY, Liu P,
Zhang H, Mak NK, Yue PY and Wong RN: Role of G3BP1 in
glucocorticoid receptor-mediated microRNA-15b and microRNA-23a
biogenesis in endothelial cells. Cell Mol Life Sci. 74:3613–3630.
2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xiong W, Ran J, Jiang R, Guo P, Shi X, Li
H, Lv X, Li J and Chen D: MIRNA-320a inhibits glioma cell invasion
and migration by directly targeting aquaporin 4. Oncol Rep.
39:1939–1947. 2018.PubMed/NCBI
|
10
|
Liu DK, Wei YJ, Guo Y, Wang J and Wang GH:
MiRNA-93 functions as an oncogene in glioma by directly targeting
RBL2. Eur Rev Med Pharmacol Sci. 22:2343–2350. 2018.PubMed/NCBI
|
11
|
Chen X, Yang F, Zhang T, Wang W, Xi W, Li
Y, Zhang D, Huo Y, Zhang J, Yang A and Wang T: MiR-9 promotes
tumorigenesis and angiogenesis and is activated by MYC and OCT4 in
human glioma. J Exp Clin Cancer Res. 38:992019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yang L, Mu Y, Cui H, Liang Y and Su X:
MiR-9-3p augments apoptosis induced by H2O2 through down regulation
of Herpud1 in glioma. PLoS One. 12:e01748392017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Golson ML and Kaestner KH: Fox
transcription factors: From development to disease. Development.
143:4558–4570. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Creagh EM, Conroy H and Martin SJ:
Caspase-activation pathways in apoptosis and immunity. Immunol Rev.
193:10–21. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen J, Wu X, Xing Z, Ma C, Xiong W, Zhu X
and He X: FOXG1 Expression is elevated in glioma and inhibits
glioma cell apoptosis. J Cancer. 9:778–783. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shibata M, Kurokawa D, Nakao H, Ohmura T
and Aizawa S: MicroRNA-9 modulates Cajal-Retzius cell
differentiation by suppressing Foxg1 expression in mouse medial
pallium. J Neurosci. 28:10415–10421. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Luo H, Zhang H, Zhang Z, Zhang X, Ning B,
Guo J, Nie N, Liu B and Wu X: Down-regulated miR-9 and miR-433 in
human gastric carcinoma. J Exp Clin Cancer Res. 28:822009.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhu M, Xu Y, Ge M, Gui Z and Yan F:
Regulation of UHRF1 by microRNA-9 modulates colorectal cancer cell
proliferation and apoptosis. Cancer Sci. 106:833–839. 2015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Kersigo J, D'Angelo A, Gray BD, Soukup GA
and Fritzsch B: The role of sensory organs and the forebrain for
the development of the craniofacial shape as revealed by
Foxg1-cre-mediated microRNA loss. Genesis. 49:326–341. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang L, Wang J, Jin T, Zhou Y and Chen Q:
FoxG1 facilitates proliferation and inhibits differentiation by
downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys
Res Commun. 504:46–53. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Schäfer S, Behling F, Skardelly M, Koch M,
Ott I, Paulsen F, Tabatabai G and Schittenhelm J: Low FoxG1 and
high Olig-2 labelling indices define a prognostically favourable
subset in isocitrate dehydrogenase (IDH)-mutant gliomas. Neuro Appl
Neurobiol. 44:207–223. 2018. View Article : Google Scholar
|
23
|
Goldbrunner R, Ruge M, Kocher M, Lucas CW,
Galldiks N and Grau S: The treatment of gliomas in adulthood. Dtsch
Arztebl Int. 115:20–21. 2018.
|
24
|
Wei Y, Schober A and Weber C: Pathogenic
arterial remodeling: The good and bad of microRNAs. Am J Physiol
Heart Circu Physiol. 304:H1050–H1059. 2013. View Article : Google Scholar
|
25
|
Li B, Liu YH, Sun AG, Huan LC, Li HD and
Liu DM: MiR-130b functions as a tumor promoter in glioma via
regulation of ERK/MAPK pathway. Eur Rev Med Pharmacol Sci.
21:2840–2846. 2017.PubMed/NCBI
|
26
|
Zhou B, Xu H, Xia M, Sun C, Li N, Guo E,
Guo L, Shan W, Lu H, Wu Y, et al: Overexpressed miR-9 promotes
tumor metastasis via targeting E-cadherin in serous ovarian cancer.
Front Med. 11:214–222. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tang H, Yao L, Tao X, Yu Y, Chen M, Zhang
R and Xu C: Mir-9 functions as a tumor suppressor in ovarian serous
carcinoma by targeting tln1. Int J Mol Med. 32:381–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhu SW, Li JP, Ma XL, Ma JX, Yang Y, Chen
Y and Liu W: MiR-9 modulates osteosarcoma cell growth by targeting
the GCIP tumor suppressor. Asian Pac J Cancer Prev. 16:4509–4513.
2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang J, Wang B, Ren H and Chen W: Mir-9-5p
inhibits pancreatic cancer cell proliferation, invasion and
glutamine metabolism by targeting GOT1. Biochem Biophy Res Commun.
509:241–248. 2019. View Article : Google Scholar
|
30
|
Han Y, Liu Y, Fu X, Zhang Q, Huang H,
Zhang C, Li W and Zhang J: MiR-9 inhibits the metastatic ability of
hepatocellular carcinoma via targeting beta galactoside
alpha-2,6-sialyltransferase 1. J Physiol Biochem. 74:491–501. 2018.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Ding Y, Pan Y, Liu S, Jiang F and Jiao J:
Elevation of MiR-9-3p suppresses the epithelial-mesenchymal
transition of nasopharyngeal carcinoma cells via down-regulating
FN1, ITGB1 and ITGAV. Cancer Biol Ther. 18:414–424. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen L, Hu W, Li G, Guo Y, Wan Z and Yu J:
Inhibition of miR-9-5p suppresses prostate cancer progress by
targeting StarD13. Cell Mol Biol Lett. 24:202019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen Y, Zhang S, Zhao R, Zhao Q and Zhang
T: Upregulated miR-9-3p promotes cell growth and inhibits apoptosis
in medullary thyroid carcinoma by targeting BLCAP. Oncol Res.
25:1215–1222. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Han L, Wang W, Ding W and Zhang L: MiR-9
is involved in TGF-β1-induced lung cancer cell invasion and
adhesion by targeting SOX7. J Cell Mol Med. 21:2000–2008. 2017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Li Y, Zhao L, Li N, Miao Y, Zhou H and Jia
L: MiR-9 regulates the multidrug resistance of chronic myelogenous
leukemia by targeting ABCB1. Oncol Rep. 37:2193–2200. 2017.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Manuel MN, Martynoga B, Molinek MD, Quinn
JC, Kroemmer C, Mason JO and Price DJ: The transcription factor
Foxg1 regulates telencephalic progenitor proliferation cell
autonomously, in part by controlling Pax6 expression levels. Neural
Dev. 6:92011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Brancaccio M, Pivetta C, Granzotto M,
Filippis C and Mallamaci A: Emx2 and Foxg1 inhibit gliogenesis and
promote neuronogenesis. Stem Cells. 28:1206–1218. 2010.PubMed/NCBI
|
38
|
Adesina AM, Nguyen Y, Mehta V, Takei H,
Stangeby P, Crabtree S, Chintagumpala M and Gumerlock MK: FOXG1
dysregulation is a frequent event in medulloblastoma. J Neurooncol.
85:111–122. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ji KX, Cui F, Qu D, Sun RY, Sun P, Chen
FY, Wang SL and Sun HS: MiR-378 promotes the cell proliferation of
non-small cell lung cancer by inhibiting FOXG1. Eur Rev Med
Pharmacol Sci. 22:1011–1019. 2018.PubMed/NCBI
|
40
|
Chan DW, Liu VW, To RM, Chiu PM, Lee WY,
Yao KM, Cheung AN and Ngan HY: Overexpression of FOXG1 contributes
to TGF-β resistance through inhibition of p21WAF1/CIP1expression in
ovarian cancer. Br J Cancer. 101:1433–1443. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bredenkamp N, Seoighe C and Illing N:
Comparative evolutionary analysis of the FoxG1 transcription factor
from diverse vertebrates identifies conserved recognition sites for
microRNA regulation. Dev Genes Evol. 217:227–233. 2007. View Article : Google Scholar : PubMed/NCBI
|