1
|
Arnold M, Sierra MS, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global patterns and trends in
colorectal cancer incidence and mortality. Gut. 66:683–691. 2017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Dolatkhah R, Somi MH, Kermani IA,
Ghojazadeh M, Jafarabadi MA, Farassati F and Dastgiri S: Increased
colorectal cancer incidence in Iran: A systematic review and
meta-analysis. BMC Public Health. 15:9972015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yin TF, Wang M, Qing Y, Lin YM and Wu D:
Research progress on chemopreventive effects of phytochemicals on
colorectal cancer and their mechanisms. World J Gastroenterol.
22:7058–7068. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bradbury KE, Appleby PN and Key TJ: Fruit,
vegetable, and fiber intake in relation to cancer risk: Findings
from the European prospective investigation into cancer and
nutrition (EPIC). Am J Clin Nutr. 100 (Suppl 1):S394–S398. 2014.
View Article : Google Scholar
|
5
|
Abdull Razis AF, Ibrahim MD and Kntayya
SB: Health benefits of moringa oleifera. Asian Pac J Cancer Prev.
15:8571–8576. 2014. View Article : Google Scholar
|
6
|
Karim NA, Ibrahim MD, Kntayya SB, Rukayadi
Y, Hamid HA and Razis AFA: Moringa oleifera Lam: Targeting
chemoprevention. Asian Pac J Cancer Prev. 17:3675–3686.
2016.PubMed/NCBI
|
7
|
Leone A, Spada A, Battezzati A, Schiraldi
A, Aristil J and Bertoli S: Cultivation, genetic,
ethnopharmacology, phytochemistry and pharmacology of Moringa
oleifera leaves: An overview. Int J Mol Sci. 16:12791–12835. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Francis JA, Jayaprakasam B, Olson LK and
Nair MG: Insulin secretagogues from Moringa oleifera with
cyclooxygenase enzyme and lipid peroxidation inhibitory activities.
Helv Chim Acta. 87:317–326. 2004. View Article : Google Scholar
|
9
|
Cheenpracha S, Park EJ, Yoshida WY, Barit
C, Wall M, Pezzuto JM and Chang LC: Potential anti-inflammatory
phenolic glycosides from the medicinal plant Moringa oleifera
fruits. Bioorg Med Chem. 18:6598–6602. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Al-Asmari AK, Albalawi SM, Athar MT, Khan
AQ, Al-Shahrani H and Islam M: Moringa oleifera as an anti-cancer
agent against breast and colorectal cancer cell lines. PLoS One.
10:e01358142015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Elsayed EA, Sharaf-Eldin MA and Wadaan M:
In vitro evaluation of cytotoxic activities of essential oil from
moringa oleifera seeds on HeLa, HepG2, MCF-7, CACO-2 and L929 cell
lines. Asian Pac J Cancer Prev. 16:4671–4675. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Suphachai C: Antioxidant and anticancer
activities of Moringa oleifera leaves. J Med Plants Res. 8:318–325.
2014. View Article : Google Scholar
|
13
|
Potestà M, Minutolo A, Gismondi A, Canuti
L, Kenzo M, Roglia V, Macchi F, Grelli S, Canini A, Colizzi V and
Montesano C: Cytotoxic and apoptotic effects of different extracts
of Moringa oleifera Lam on lymphoid and monocytoid cells. Exp Ther
Med. 18:5–17. 2019.PubMed/NCBI
|
14
|
Pirrò S, Matic I, Guidi A, Zanella L,
Gismondi A, Cicconi R, Bernardini R, Colizzi V, Canini A, Mattei M
and Galgani A: Identification of microRNAs and relative target
genes in Moringa oleifera leaf and callus. Sci Rep. 9:151452019.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Muangnoi C, Chingsuwanrote P,
Praengamthanachoti P, Svasti S and Tuntipopipat S: Moringa oleifera
pod inhibits inflammatory mediator production by
lipopolysaccharide-stimulated RAW 264.7 murine macrophage cell
lines. Inflammation. 35:445–455. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Budda S, Butryee C, Tuntipopipat S,
Rungsipipat A, Wangnaithum S, Lee JS and Kupradinun P: Suppressive
effects of Moringa oleifera Lam pod against mouse colon
carcinogenesis induced by azoxymethane and dextran sodium sulfate.
Asian Pac J Cancer Prev. 12:3221–3228. 2011.PubMed/NCBI
|
17
|
Kraiphet S, Butryee C, Rungsipipat A,
Budda S, Rattanapinyopitak K and Tuntipopipat S: Apoptosis induced
by Moringa oleifera Lam. pod in mouse colon carcinoma model. Comp
Clin Pathol. 27:21–30. 2018. View Article : Google Scholar
|
18
|
Kosulwat V, Rojroongwasinkul N,
Boonpraderm A, Viriyapanich T, Jitnarin N, Sornkaew N and
Vanicchakul C: Food consumption data of Thailand. Bangkok: National
Bureau of Agricultural Commodity and Food Standards, Ministry of
Agriculture and Cooperatives; Bangkok, Thailand: 2006, (In
Thai).
|
19
|
Fahey JW: Moringa oleifera: A review of
the medical evidence for its nutritional, therapeutic, and
prophylactic properties. Part 1. Trees Life J. 1:52005.
|
20
|
Raju J, Swamy MV, Cooma I, Patlolla JM,
Pittman B, Reddy BS, Steele VE and Rao CV: Low doses of
beta-carotene and lutein inhibit AOM-induced rat colonic ACF
formation but high doses augment ACF incidence. Int J Cancer.
113:798–802. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Naganuma T, Shiogama K and Uchiumi T: The
N-terminal regions of eukaryotic acidic phosphoproteins P1 and P2
are crucial for heterodimerization and assembly into the ribosomal
GTPase-associated center. Genes Cells. 12:501–510. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu X, Xiong X and Sun Y: The role of
ribosomal proteins in the regulation of cell proliferation,
tumorigenesis, and genomic integrity. Sci China Life Sci.
59:656–672. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang L, Zhou W, Velculescu VE, Kern SE,
Hruban RH, Hamilton SR, Vogelstein B and Kinzler KW: Gene
expression profiles in normal and cancer cells. Science.
276:1268–1272. 1997. View Article : Google Scholar : PubMed/NCBI
|
24
|
Loging WT and Reisman D: Elevated
expression of ribosomal protein genes L37, RPP-1, and S2 in the
presence of mutant p53. Cancer Epidemiol Biomarkers Prev.
8:1011–1016. 1999.PubMed/NCBI
|
25
|
Artero-Castro A, Castellvi J, García A,
Hernández J, Ramón y Cajal S and Lleonart ME: Expression of the
ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic tumors.
Hum Pathol. 42:194–203. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Artero-Castro A, Kondoh H,
Fernández-Marcos PJ, Serrano M, Ramón y Cajal S and Lleonart ME:
Rplp1 bypasses replicative senescence and contributes to
transformation. Exp Cell Res. 315:1372–1383. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Perucho L, Artero-Castro A, Guerrero S,
Ramón y Cajal S, LLeonart ME and Wang ZQ: RPLP1, a crucial
ribosomal protein for embryonic development of the nervous system.
PLoS One. 9:e999562014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Artero-Castro A, Perez-Alea M, Feliciano
A, Leal JA, Genestar M, Castellvi J, Peg V, Ramón Y Cajal S and
Lleonart ME: Disruption of the ribosomal P complex leads to
stress-induced autophagy. Autophagy. 11:1499–1519. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yan QJ, Asafo-Adjei PK, Arnold HM, Brown
RE and Bauchwitz RP: A phenotypic and molecular characterization of
the fmr1-tm1Cgr fragile X mouse. Genes Brain Behav. 3:337–359.
2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bagni C, Tassone F, Neri G and Hagerman R:
Fragile X syndrome: Causes, diagnosis, mechanisms, and
therapeutics. J Clin Invest. 122:4314–4322. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li Y, Tang Y, Ye L, Liu B, Liu K, Chen J
and Xue Q: Establishment of a hepatocellular carcinoma cell line
with unique metastatic characteristics through in vivo selection
and screening for metastasis-related genes through cDNA microarray.
J Cancer Res Clin Oncol. 129:43–51. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu Y, Zhu X, Zhu J, Liao S, Tang Q, Liu
K, Guan X, Zhang J and Feng Z: Identification of differential
expression of genes in hepatocellular carcinoma by suppression
subtractive hybridization combined cDNA microarray. Oncol Rep.
18:943–951. 2007.PubMed/NCBI
|
33
|
Schultz-Pedersen S, Hasle H, Olsen JH and
Friedrich U: Evidence of decreased risk of cancer in individuals
with fragile X. Am J Med Genet. 103:226–230. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lucá R, Averna M, Zalfa F, Vecchi M,
Bianchi F, La Fata G, Del Nonno F, Nardacci R, Bianchi M, Nuciforo
P, et al: The fragile X protein binds mRNAs involved in cancer
progression and modulates metastasis formation. EMBO Mol Med.
5:1523–1536. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zalfa F, Panasiti V, Carotti S,
Zingariello M, Perrone G, Sancillo L, Pacini L, Luciani F, Roberti
V, D'Amico S, et al: The fragile X mental retardation protein
regulates tumor invasiveness-related pathways in melanoma cells.
Cell Death Dis. 8:e31692017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Töhönen V, Osterlund C and Nordqvist K:
Testatin: A cystatin-related gene expressed during early testis
development. Proc Natl Acad Sci USA. 95:14208–14213. 1998.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Hasegawa K, Chuma S, Tada T, Sakurai T,
Tamura M, Suemori H and Nakatsuji N: Testatin transgenic and
knockout mice exhibit normal sex-differentiation. Biochem Biophys
Res Commun. 341:369–375. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Eaves-Pyles T, Patel J, Arigi E, Cong Y,
Cao A, Garg N, Dhiman M, Pyles RB, Arulanandam B, Miller AL, et al:
Immunomodulatory and antibacterial effects of cystatin 9 against
Francisella tularensis. Mol Med. 19:263–275. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Magister S and Kos J: Cystatins in immune
system. J Cancer. 4:45–56. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Strojnik T, Zajc I, Bervar A, Zidanik B,
Golouh R, Kos J, Dolenc V and Lah T: Cathepsin B and its inhibitor
stefin A in brain tumors. Pflugers Arch. 439 (3 Suppl):R122S–R123S.
2000. View Article : Google Scholar
|
41
|
Hong S, Choi I, Woo JM, Oh J, Kim T, Choi
E, Kim TW, Jung YK, Kim DH, Sun CH, et al: Identification and
integrative analysis of 28 novel genes specifically expressed and
developmentally regulated in murine spermatogenic cells. J Biol
Chem. 280:7685–7693. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cassandri M, Smirnov A, Novelli F, Pitolli
C, Agostini M, Malewicz M, Melino G and Raschellà G: Zinc-finger
proteins in health and disease. Cell Death Discov. 3:170712017.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Meruvu S, Hugendubler L and Mueller E:
Regulation of adipocyte differentiation by the zinc finger protein
ZNF638. J Biol Chem. 286:26516–26523. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lu G and Wang Y: Functional diversity of
mammalian type 2C protein phosphatase isoforms: New tales from an
old family. Clin Exp Pharmacol Physiol. 35:107–112. 2008.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Sun C, Wang G, Wrighton KH, Lin H,
Songyang Z, Feng XH and Lin X: Regulation of p27Kip1
phosphorylation and G1 cell cycle progression by protein
phosphatase PPM1G. Am J Cancer Res. 6:2207–2220. 2016.PubMed/NCBI
|
46
|
Khoronenkova SV, Dianova II, Ternette N,
Kessler BM, Parsons JL and Dianov GL: ATM-dependent downregulation
of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol
Cell. 45:801–813. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Foster WH, Langenbacher A, Gao C, Chen J
and Wang Y: Nuclear phosphatase PPM1G in cellular survival and
neural development. Dev Dyn. 242:1101–1109. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
McNamara RP, McCann JL, Gudipaty SA and
D'Orso I: Transcription factors mediate the enzymatic disassembly
of promoter-bound 7SK snRNP to locally recruit P-TEFb for
transcription elongation. Cell Rep. 5:1256–1268. 2013. View Article : Google Scholar : PubMed/NCBI
|