1
|
Li Y, Wang S, Wei X, Zhang S, Song Z, Chen
X and Zhang J: Role of inhibitor of yes-associated protein 1 in
triple-negative breast cancer with taxol-based chemoresistance.
Cancer Sci. 110:561–567. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bardia A, Parton M, Kümmel S, Estévez LG,
Huang CS, Cortés J, Ruiz-Borrego M, Telli ML, Martin-Martorell P,
López R, et al: Paclitaxel with inhibitor of apoptosis antagonist,
LCL161, for localized triple-negative breast cancer, prospectively
stratified by gene signature in a biomarker-driven neoadjuvant
trial. J Clin Oncol. 20:JCO20177483922018.
|
3
|
Murphy BL, Day CN, Hoskin TL, Habermann EB
and Boughey JC: Neoadjuvant chemotherapy use in breast cancer is
greatest in excellent responders: Triple-negative and
HER2+ subtypes. Ann Surg Oncol. 25:2241–2248. 2018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Al-Hilli Z, Choong G, Keeney MG, Visscher
DW, Ingle JN, Goetz MP and Jakub JW: Metaplastic breast cancer has
a poor response to neoadjuvant systemic therapy. Breast Cancer Res
Treat. 176:709–716. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang RX, Chen S, Huang L, Zhou Y and Shao
ZM: Monitoring serum VEGF in neoadjuvant chemotherapy for patients
with triple-negative breast cancer: A new strategy for early
prediction of treatment response and patient survival. Oncologist.
24:753–761. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Herrero-Vicent C, Guerrero A, Gavilá J,
Gozalbo F, Hernández A, Sandiego S, Algarra MA, Calatrava A,
Guillem-Porta V and Ruiz-Simón A: Predictive and prognostic impact
of tumour infiltrating lymphocytes in triple-negative breast cancer
treated with neoadjuvant chemotherapy. Ecancermedicalscience.
11:7592017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ding Y, Ding K, Yu K, Zou D, Yang H, He X,
Mo W, Yu X and Ding X: Prognosis and endocrine therapy selection
for patients with low hormone receptor-positive breast cancer
following neoadjuvant chemotherapy: A retrospective study of 570
patients in China. Oncol Lett. 18:6690–6696. 2019.PubMed/NCBI
|
8
|
Sharma P, López-Tarruella S, García-Saenz
JA, Khan QJ, Gómez HL, Prat A, Moreno F, Jerez-Gilarranz Y,
Barnadas A, Picornell AC, et al: Pathological response and survival
in triple-negative breast cancer following neoadjuvant carboplatin
plus docetaxel. Clin Cancer Res. 24:5820–5829. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Akimoto E, Kadoya T, Kajitani K, Emi A,
Shigematsu H, Ohara M, Masumoto N and Okada M: Role of 18F-PET/CT
in predicting prognosis of patients with breast cancer after
neoadjuvant chemotherapy. Clin Breast Cancer. 18:45–52. 2018.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Resende U, Cabello C, Ramalho SOB and
Zeferino LC: Prognostic assessment of breast carcinoma submitted to
neoadjuvant chemotherapy with pathological non-complete response.
BMC Cancer. 19:6012019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jézéquel P, Kerdraon O, Hondermarck H,
Guérin-Charbonnel C, Lasla H, Gouraud W, Canon JL, Gombos A, Dalenc
F, Delaloge S, et al: Identification of three subtypes of
triple-negative breast cancer with potential therapeutic
implications. Breast Cancer Res. 21:652019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kim T, Han W, Kim MK, Lee JW, Kim J, Ahn
SK, Lee HB, Moon HG, Lee KH, Kim TY, et al: Predictive significance
of p53, Ki-67, and Bcl-2 expression for pathologic complete
response after neoadjuvant chemotherapy for triple-negative breast
cancer. J Breast Cancer. 18:16–21. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Abdelrahman AE, Rashed HE, Abdelgawad M
and Abdelhamid MI: Prognostic impact of EGFR and cytokeratin 5/6
immunohistochemical expression in triple-negative breast cancer.
Ann Diagn Pathol. 28:43–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sobral-Leite M, Lips EH, Vieira-Monteiro
HA, Giacomin LC, Freitas-Alves DR, Cornelissen S, Mulder L,
Wesseling J, Schmidt MK and Vianna-Jorge R: Evaluation of the EGFR
polymorphism R497K in two cohorts of neoadjuvantly treated breast
cancer patients. PLoS One. 12:e01897502017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen X, He C, Han D, Zhou M, Wang Q, Tian
J, Li L, Xu F, Zhou E and Yang K: The predictive value of Ki-67
before neoadjuvant chemotherapy for breast cancer: A systematic
review and meta-analysis. Future Oncol. 13:843–857. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Hu YL, Li GL and Lin ZhX: Values of serum
RASSF1A and WIF-1 methylation could evaluate the efficacy of
neoadjuvant chemotherapy for advanced breast cancer. Jiyinzuxue Yu
Yingyong Shengwuxue. 37:4937–4942. 2018.(In Chinese).
|
17
|
Haruki S, Imoto I, Kozaki K, Matsui T,
Kawachi H, Komatsu S, Muramatsu T, Shimada Y, Kawano T and Inazawa
J: Frequent silencing of protocadherin 17, a candidate tumour
suppressor for esophageal squamous cell carcinoma. Carcinogenesis.
31:1027–1036. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang Y, Liu J, Li X and Li JC:
PCDH17 gene promoter demethylation and cell cycle arrest by
genistein in gastric cancer. Histol Histopathol. 27:217–224.
2012.PubMed/NCBI
|
19
|
Lin YL, Gui SL, Guo H, Ma JG and Li WP:
Protocadherin17 promoter methylation is a potential predictive
biomarker in clear cell renal cell carcinoma. Med Sci Monit.
21:2870–2876. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Costa VL, Henrique R, Danielsen SA, Eknaes
M, Patrício P, Morais A, Oliveira J, Lothe RA, Teixeira MR, Lind
GE, et al: TCF21 and PCDH17 methylation: An innovative panel
of biomarkers for a simultaneous detection of urological cancers.
Epigenetics. 6:1120–1130. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hu X, Sui X, Li L, Huang X, Rong R, Su X,
Shi Q, Mo L, Shu X, Kuang Y, et al: Protocadherin 17 acts as a
tumour suppressor inducing tumour cell apoptosis and autophagy, and
is frequently methylated in gastric and colorectal cancers. J
Pathol. 229:62–73. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yin X, Xiang T, Mu J, Mao H, Li L, Huang
X, Li C, Feng Y, Luo X, Wei Y, et al: Protocadherin 17 functions as
a tumor suppressor suppressing Wnt/β-catenin signaling and cell
metastasis and is frequently methylated in breast cancer.
Oncotarget. 7:51720–51732. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang H, Zhang X, Wu X, Li W, Su P, Cheng
H, Xiang L, Gao P and Zhou G: Interference of Frizzled 1 (FZD1)
reverses multidrug resistance in breast cancer cells through the
Wnt/β-catenin pathway. Cancer Lett. 323:106–113. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Edge SB and Compton CC: The American Joint
Committee on Cancer: The 7th edition of the AJCC cancer staging
manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Xu L, Liang Z, Li S and Ma J: Signaling
via the CXCR5/ERK pathway is mediated by CXCL13 in mice with breast
cancer. Oncol Lett. 15:9293–9298. 2018.PubMed/NCBI
|
26
|
Yu DF, Jiang SJ, Pan ZP, Cheng WD, Zhang
WJ, Yao XK, Li YC and Lun YZ: Expression and clinical significance
of Sirt1 in colorectal cancer. Oncol Lett. 11:1167–1172. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Hammond ME, Hayes DF, Dowsett M, Allred
DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS,
Hayes M, et al: American Society of Clinical Oncology/College of
American Pathologists guideline recommendations for
immunohistochemical testing of estrogen and progesterone receptors
in breast cancer. Arch Pathol Lab Med. 134:907–922. 2010.PubMed/NCBI
|
28
|
Goldhirsch A, Wood WC, Coates AS, Gelber
RD, Thürlimann B and Senn HJ; Panel members, : Strategies for
subtypes - dealing with the diversity of breast cancer: Highlights
of the St. Gallen International Expert Consensus on the Primary
Therapy of Early Breast Cancer 2011. Ann Oncol. 22:1736–1747. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Cuadros M and Villegas R: Systematic
review of HER2 breast cancer testing. Appl Immunohistochem Mol
Morphol. 17:1–7. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gallardo A, Garcia-Valdecasas B, Murata P,
Teran R, Lopez L, Barnadas A and Lerma E: Inverse relationship
between Ki67 and survival in early luminal breast cancer:
Confirmation in a multivariate analysis. Breast Cancer Res Treat.
167:31–37. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
von Minckwitz G, Schneeweiss A, Loibl S,
Salat C, Denkert C, Rezai M, Blohmer JU, Jackisch C, Paepke S,
Gerber B, et al: Neoadjuvant carboplatin in patients with
triple-negative and HER2-positive early breast cancer (GeparSixto;
GBG 66): A randomised phase 2 trial. Lancet Oncol. 15:747–756.
2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hwang HW, Jung H, Hyeon J, Park YH, Ahn
JS, Im YH, Nam SJ, Kim SW, Lee JE, Yu JH, et al: A nomogram to
predict pathologic complete response (pCR) and the value of
tumor-infiltrating lymphocytes (TILs) for prediction of response to
neoadjuvant chemotherapy (NAC) in breast cancer patients. Breast
Cancer Res Treat. 173:255–266. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Duan YF, Sun DL, Chen J, Zhu F and An Y:
MicroRNA-29a/b/c targets iNOS and is involved in protective remote
ischemic preconditioning in an ischemia-reperfusion rat model of
non-alcoholic fatty liver disease. Oncol Lett. 13:1775–1782. 2017.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Ogston KN, Miller ID, Payne S, Hutcheon
AW, Sarkar TK, Smith I, Schofield A and Heys SD: A new histological
grading system to assess response of breast cancers to primary
chemotherapy: Prognostic significance and survival. Breast.
12:320–327. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Shintia C, Endang H and Diani K:
Assessment of pathological response to neoadjuvant chemotherapy in
locally advanced breast cancer using the Miller-Payne system and
TUNEL. Malays J Pathol. 38:25–32. 2016.PubMed/NCBI
|
36
|
Li Ch, Li HJ, Chen Q, Zhang XM and Li CL:
Expression of ASPH gene in invasion breast cancer and its clinical
significance in promoter methylation. Sichuan Da Xue Xue Bao Yi Xue
Ban. 49:54–58. 2018.(In Chinese). PubMed/NCBI
|
37
|
Hamy AS, Belin L, Bonsang-Kitzis H, Paquet
C, Pierga JY, Lerebours F, Cottu P, Rouzier R, Savignoni A, Lae M,
et al: Pathological complete response and prognosis after
neoadjuvant chemotherapy for HER2-positive breast cancers before
and after trastuzumab era: Results from a real-life cohort. Br J
Cancer. 114:44–52. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Arnaout A, Boileau JF and Brackstone M:
Surgical considerations in locally advanced breast cancer patients
receiving neoadjuvant chemotherapy. Curr Opin Support Palliat Care.
8:39–45. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen F, Zhang Z and Pu F: Role of
stanniocalcin-1 in breast cancer. Oncol Lett. 18:3946–3953.
2019.PubMed/NCBI
|
40
|
Kong D, Wang MH, Yang J and Liang Li:
Association of T-cadherin levels with the response to neoadjuvant
chemotherapy in locally advanced breast cancer. Oncotarget.
8:13747–13753. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Hernandez SJ, Dolivo DM and Dominko T:
PRMT8 demonstrates variant-specific expression in cancer cells and
correlates with patient survival in breast, ovarian and gastric
cancer. Oncol Lett. 13:1983–1989. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Azad N, Zahnow CA, Rudin CM and Baylin SB:
The future of epigenetic therapy in solid tumours--lessons from the
past. Nat Rev Clin Oncol. 10:256–266. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Xie N, Mou L, Yuan J, Liu W, Deng T, Li Z,
Jing Y and Hu Z: Modulating drug resistance by targeting BCRP/ABCG2
using retrovirus-mediated RNA interference. PLoS One.
9:e1034632014. View Article : Google Scholar : PubMed/NCBI
|