1
|
World Health Organization: WHO report on
cancer: Setting priorities, investing wisely and providing care for
all World Health Organization, 2020.
|
2
|
Harbeck N, Penault-Llorca F, Cortes J,
Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J and Cardoso F:
Breast cancer. Nat Rev Dis Primers. 5:662019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Santini D, Vincenzi B, Galluzzo S,
Battistoni F, Rocci L, Venditti O, Schiavon G, Angeletti S, Uzzalli
F, Caraglia M and Dicuonzo G: Repeated intermittent low-dose
therapy with zoledronic acid induces an early, sustained, and
long-lasting decrease of peripheral vascular endothelial growth
factor levels in cancer patients. Clin Cancer Res. 13:4482–4486.
2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bhosale SK, Deshpande SR, Wagh RD and
Dhake AS: Biological activities of 1, 2, 3-oxadiazolium-5-olate
derivatives. Der Chem Sin. 6:79–95. 2015.
|
5
|
Badami BV: Mesoionic compounds. Resonance.
11:40–48. 2006. View Article : Google Scholar
|
6
|
Kier LB and Roche EB: Medicinal chemistry
of the mesoionic compounds. J Pharm Sci. 56:149–168. 1967.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Senff-Ribeiro A, Echevarria A, Silva EF,
Sanches Veiga S and Oliveira MB: Effect of a new
1,3,4-thiadiazolium mesoionic compound (MI-D) on B16-F10 murine
melanoma. Melanoma Res. 13:465–471. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Senff-Ribeiro A, Echevarria A, Silva EF,
Franco CR, Veiga SS and Oliveira MB: Cytotoxic effect of a new
1,3,4-thiadiazolium mesoionic compound (MI-D) on cell lines of
human melanoma. Br J Cancer. 91:297–304. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cadena SMSC, Carnieri EGS, Echevarria A
and de Oliveira MBM: Effect of MI-D, a new mesoionic compound, on
energy-linked functions of rat liver mitochondria. FEBS Lett.
440:46–50. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cadena SMSC, Carnieri EGS, Echevarria A
and de Oliveira MBM: Interference of MI-D, a new mesoionic
compound, on artificial and native membranes. Cell Biochem Funct.
20:31–37. 2002. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Dunkley CS and Thoman CJ: Synthesis and
biological evaluation of a novel phenyl substituted sydnone series
as potential antitumor agents. Bioorg Med Chem Lett. 13:2899–2901.
2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gozzi GJ, Pires Ado R, Martinez GR, Rocha
ME, Noleto GR, Echevarria A, Canuto AV and Cadena SM: The
antioxidant effect of the mesoionic compound SYD-1 in mitochondria.
Chem Biol Interact. 205:181–187. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Galuppo LF, dos Reis Lívero FA, Martins
GG, Cardoso CC, Beltrame OC, Klassen LMB, Canuto AV, Echevarria A,
Telles JE, Klassen G and Acco A: Sydnone 1: A mesoionic compound
with antitumoral and haematological effects in vivo. Basic Clin
Pharmacol Toxicol. 119:41–50. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Amaral de Mascena Costa L, Cássio Silva de
Lima F, da Silva Viana R, de Sousa Araújo S, Wischral A, Diógenes
da Silva Souzad H, Filgueiras de Athayde Filhod P, Araújo de
Azevedo L, Alves Junior S, Adrião Gomes Filho M and Mathis JM:
Abstract 5877: Antitumor activity of the mesoionic compound MI H
2.4 on breast cancer cell lines. Cancer Res. 78 (Suppl
13):2018.
|
15
|
Lee AV, Oesterreich S and Davidson NE:
MCF-7 cells-changing the course of breast cancer research and care
for 45 years. J Natl Cancer Inst. 107:djv0732015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Comşa Ş, Cîmpean AM and Raica M: The story
of MCF-7 breast cancer cell line: 40 years of experience in
research. Anticancer Res. 35:3147–3154. 2015.PubMed/NCBI
|
17
|
Anvar SY, Allard G, Tseng E, Sheynkman GM,
de Klerk E, Vermaat M, Yin RH, Johansson HE, Ariyurek Y, den Dunnen
JT and Turner SW: Full-length mRNA sequencing uncovers a widespread
coupling between transcription initiation and mRNA processing.
Genome Biol. 19:462018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chiang YS, Huang YF, Midha MK, Chen TH,
Shiau HC and Chiu KP: Single cell transcriptome analysis of MCF-7
reveals consistently and inconsistently expressed gene groups each
associated with distinct cellular localization and functions. PLoS
One. 13:e01994712018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Halila GC, de Oliveira MB, Echevarria A,
Belém AC, Rocha ME, Carnieri EG, Martinez GR, Noleto GR and Cadena
SM: Effect of sydnone SYD-1, a mesoionic compound, on energy-linked
functions of rat liver mitochondria. Chem Biol Interact.
169:160–170. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Weinberg SE and Chandel NS: Targeting
mitochondria metabolism for cancer therapy. Nat Chem Biol. 11:9–15.
2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kubli DA and Gustafsson ÅB: Mitochondria
and mitophagy: The yin and yang of cell death control. Circ Res.
111:1208–1221. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lira BF, de Athayde Filho PF, Miller J,
Simas AM, de Farias Dias A and Vieira MJ: Synthesis and
characterization of some new mesoionic 1, 3-thiazolium-5-thiolates
via cyclodehydration and in situ 1, 3-dipolar
Cycloaddition/cycloreversion. Molecules. 7:791–800. 2002.
View Article : Google Scholar
|
23
|
Feoktistova M, Geserick P and Leverkus M:
Crystal violet assay for determining viability of cultured cells.
Cold Spring Harbor Protoc. 2016:pdb–rot087379. 2016. View Article : Google Scholar
|
24
|
Tsou SH, Chen TM, Hsiao HT and Chen YH: A
critical dose of doxorubicin is required to alter the gene
expression profiles in MCF-7 cells acquiring multidrug resistance.
PLoS One. 10:e01167472015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jokar F, Mahabadi JA, Salimian M, Taherian
A, Hayat SMG, Sahebkar A and Atlasi MA: Differential expression of
HSP90β in MDA-MB-231 and MCF-7 cell lines after treatment with
doxorubicin. J Pharmacopuncture. 22:28–34. 2019.PubMed/NCBI
|
26
|
Fornari FA, Randolph JK, Yalowich JC,
Ritke MK and Gewirtz DA: Interference by doxorubicin with DNA
unwinding in MCF-7 breast tumor cells. Mol Pharmacol. 45:649–656.
1994.PubMed/NCBI
|
27
|
Huang DW, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Huang DW, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT
and Harris MA: Gene ontology: Tool for the unification of biology.
Nat Genet. 25:25–29. 2000. View
Article : Google Scholar : PubMed/NCBI
|
30
|
The Gene Ontology Consortium, . The gene
ontology resource: 20 years and still GOing strong. Nucleic Acids
Res. 47:D330–D338. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kanehisa M: Post-genome informatics.
Oxford University Press. (Oxford). 2000.
|
32
|
Benjamini Y and Hochberg Y: Controlling
the false discovery rate: A practical and powerful approach to
multiple testing. J R Stat Soc Series B (Methodological).
57:289–300. 1995. View Article : Google Scholar
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Kabeya Y, Mizushima N, Ueno T, Yamamoto A,
Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T: LC3, a
mammalian homologue of yeast Apg8p, is localized in autophagosome
membranes after processing. EMBO J. 19:5720–5728. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sica V, Bravo-San Pedro JM, Stoll G and
Kroemer G: Oxidative phosphorylation as a potential therapeutic
target for cancer therapy. Int J Cancer. 146:10–17. 2020.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Brand MD and Nicholls DG: Assessing
mitochondrial dysfunction in cells. Biochem J. 435:297–312. 2011.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Tang Y, Wang Y, Kiani MF and Wang B:
Classification, treatment strategy, and associated drug resistance
in breast cancer. Clin Br Cancer. 16:335–343. 2016. View Article : Google Scholar
|
38
|
Kaur G and Singh R: Thiadiazole analogs as
potential pharmacological agents: A brief review. Int J Pharm Sci.
6:35–46. 2014.
|
39
|
Abdualkader AM, Taher MU and Yusoff NI:
Mesoionic sydnones. A review in their chemical and biological
properties. Int J Pharm Pharm Sci. 9:1–9. 2017. View Article : Google Scholar
|
40
|
Rogers GW, Burroughs SE and Dranka BP:
Direct measurements of cellular metabolism for identification of
mitochondrial drug targets. Agilent Technologies. 14–Nov;2018.
|
41
|
Czupiela PP, Delplace V and Shoicheta MS:
Cationic block amphiphiles show anti-mitochondrial activity in
multi-drug resistant breast cancer cells. J Control Realeas.
305:210–219. 2019. View Article : Google Scholar
|
42
|
Storz P: Reactive oxygen species in tumor
progression. Front Biosci. 10:1881–1896. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mizushima N, Levine B, Cuervo AM and
Klionsky DJ: Autophagy fights disease through cellular
self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Pampliega O, Orhon I, Patel B, Sridhar S,
Dıaz-Carretero A, Beau I, Codogno P, Satir BH, Satir P and Cuervo
AM: Functional interaction between autophagy and ciliogenesis.
Nature. 502:194–200. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Matsuda N, Sato S, Shiba K, Okatsu K,
Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, et al:
PINK1 stabilized by mitochondrial depolarization recruits Parkin to
damaged mitochondria and activates latent Parkin for mitophagy. J
Cell Biol. 189:211–221. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Akar U, Chaves-Reyez A, Barria M, Tari A,
Sanguino A, Kondo Y, Kondo S, Arun B, Lopez-Berestein G and Ozpolat
B: Silencing of Bcl-2 expression by small interfering RNA induces
autophagic cell death in MCF-7 breast cancer cells. Autophagy.
4:669–679. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Nakagawa I, Amano A, Mizushima N, Yamamoto
A, Yamaguchi H and Kamimoto T: Autophagy defends cells against
invading group A Streptococcus. Science. 306:1037–1040. 2004.
View Article : Google Scholar : PubMed/NCBI
|
48
|
He C and Levine B: The Beclin 1
interactome. Curr Opin Cell Biol. 22:140–149. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Cheng X, Tan S, Duan F, Yuan Q, Li Q and
Deng G: Icariin induces apoptosis by suppressing autophagy in
Tamoxifen-resistant breast cancer cell line MCF-7/TAM Breast
Cancer. 26:766–775. 2019.PubMed/NCBI
|
50
|
Liang XH, Jackson S, Seaman M, Brown K,
Kempkes B, Hibshoosh H and Levine B: Induction of autophagy and
inhibition of tumorigenesis by beclin 1. Nature. 402:672–676. 1999.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Vyas S, Zaganjor E and Haigis MC:
Mitochondria and cancer. Cell. 166:555–566. 2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bhargava V, Goldstein CD, Russell L, Xu L,
Ahmed M, Li W, Casey A, Servage K, Kollipara R, Picciarelli Z and
Kittler R: GCNA preserves genome integrity and fertility across
species. Dev Cell. 52:38–52. 2020. View Article : Google Scholar : PubMed/NCBI
|
53
|
Yin X, Wolford CC, Chang YS, McConoughey
SJ, Ramsey SA, Aderem A and Hai T: ATF3, an adaptive-response gene,
enhances TGFβ signaling and cancer-initiating cell features in
breast cancer cells. J Cell Sci. 123:3558–3565. 2010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhou ZN, Sharma VP, Beaty BT, Roh-Johnson
M, Peterson EA, Van Rooijen N, Kenny PA, Wiley HS, Condeelis JS and
Segall JE: Autocrine HBEGF expression promotes breast cancer
intravasation, metastasis and macrophage-independent invasion in
vivo. Oncogene. 33:3784–3793. 2014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Lyu JH, Park DW, Huang B, Kang SH, Lee SJ,
Lee C, Bae YS, Lee JG and Baek SH: RGS2 suppresses breast cancer
cell growth via a MCPIP1-dependent pathway. J Cell Biochem.
116:260–267. 2015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Fontanals-Cirera B, Hasson D, Vardabasso
C, Di Micco R, Agrawal P, Chowdhury A, Gantz M, de
Pablos-Aragoneses A, Morgenstern A, Wu P, et al: Harnessing BET
inhibitor sensitivity reveals AMIGO2 as a melanoma survival gene.
Mol Cell. 68:731–744.e9. 2017. View Article : Google Scholar : PubMed/NCBI
|
57
|
Niida A, Hiroko T, Kasai M, Furukawa Y,
Nakamura Y, Suzuki Y, Sugano S and Akiyama T: DKK1, a negative
regulator of Wnt signaling, is a target of the beta-catenin/TCF
pathway. Oncogene. 23:8520–8526. 2004. View Article : Google Scholar : PubMed/NCBI
|
58
|
Zhuang X, Zhang H, Li X, Li X, Cong M,
Peng F, Yu J, Zhang X, Yang Q and Hu G: Differential effects on
lung and bone metastasis of breast cancer by Wnt signalling
inhibitor DKK1. Nat Cell Biol. 19:1274–1285. 2017. View Article : Google Scholar : PubMed/NCBI
|