Implications of lipid droplets in lung cancer: Associations with drug resistance (Review)
- Authors:
- Chunlai Jin
- Peng Yuan
-
Affiliations: Department of Surgery, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China - Published online on: June 24, 2020 https://doi.org/10.3892/ol.2020.11769
- Pages: 2091-2104
-
Copyright: © Jin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Welte MA: Expanding roles for lipid droplets. Curr Biol. 25:R470–R481. 2015. View Article : Google Scholar : PubMed/NCBI | |
Walther TC, Chung J and Farese RV Jr: Lipid Droplet Biogenesis. Annu Rev Cell Dev Biol. 33:491–510. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wilfling F, Haas JT, Walther TC and Farese RV Jr: Lipid droplet biogenesis. Curr Opin Cell Biol. 29:39–45. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cohen S, Valm AM and Lippincott-Schwartz J: Interacting organelles. Curr Opin Cell Biol. 53:84–91. 2018. View Article : Google Scholar : PubMed/NCBI | |
Olzmann JA and Carvalho P: Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 20:137–155. 2019. View Article : Google Scholar : PubMed/NCBI | |
Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, Cohen AR, Davidson MW, Betzig E and Lippincott-Schwartz J: Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature. 546:162–167. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fujimoto T, Ohsaki Y, Cheng J, Suzuki M and Shinohara Y: Lipid droplets: A classic organelle with new outfits. Histochem Cell Biol. 130:263–279. 2008. View Article : Google Scholar : PubMed/NCBI | |
Salo VT and Ikonen E: Moving out but keeping in touch: Contacts between endoplasmic reticulum and lipid droplets. Curr Opin Cell Biol. 57:64–70. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schuldiner M and Bohnert M: A different kind of love - lipid droplet contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 1862B. 1188–1196. 2017. View Article : Google Scholar | |
Welte MA and Gould AP: Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids 186B. 1260–1272. 2017. View Article : Google Scholar | |
Karagiannis F, Masouleh SK, Wunderling K, Surendar J, Schmitt V, Kazakov A, Michla M, Hölzel M, Thiele C and Wilhelm C: Lipid-Droplet Formation Drives Pathogenic Group 2 Innate Lymphoid Cells in Airway Inflammation. Immunity. 52:620–634 e626. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bailey AP, Koster G, Guillermier C, Hirst EM, MacRae JI, Lechene CP, Postle AD and Gould AP: Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila. Cell. 163:340–353. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rambold AS, Cohen S and Lippincott-Schwartz J: Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell. 32:678–692. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jarc E and Petan T: Lipid Droplets and the Management of Cellular Stress. Yale J Biol Med. 92:435–452. 2019.PubMed/NCBI | |
Pavlova NN and Thompson CB: The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sciacovelli M and Frezza C: Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 284:3132–3144. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ou J, Miao H, Ma Y, Guo F, Deng J, Wei X, Zhou J, Xie G, Shi H, Xue B, et al: Loss of abhd5 promotes colorectal tumor development and progression by inducing aerobic glycolysis and epithelial-mesenchymal transition. Cell Rep. 9:1798–1811. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zagani R, El-Assaad W, Gamache I and Teodoro JG: Inhibition of adipose triglyceride lipase (ATGL) by the putative tumor suppressor G0S2 or a small molecule inhibitor attenuates the growth of cancer cells. Oncotarget. 6:28282–28295. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M, Tsichlis PN, Shirley Liu X and Struhl K: A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell. 17:348–361. 2010. View Article : Google Scholar : PubMed/NCBI | |
Patterson AD, Maurhofer O, Beyoglu D, Lanz C, Krausz KW, Pabst T, Gonzalez FJ, Dufour JF and Idle JR: Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res. 71:6590–6600. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ueno M, Shen WJ, Patel S, Greenberg AS, Azhar S and Kraemer FB: Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress. J Lipid Res. 54:734–743. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, Li Z, Hui J, Graham BH, Quintana A, et al: Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 160:177–190. 2015. View Article : Google Scholar : PubMed/NCBI | |
Covington JD, Coen PM, Burk DH, Obanda DN, Ebenezer PJ, Tam CS, Goodpaster BH, Ravussin E and Bajpeyi S: Intramyocellular Lipid Droplet Size Rather than Total Lipid Content Is Related to Insulin Sensitivity after 8 Weeks of Overfeeding. Diabetes. 64:A11. 2015. | |
Nielsen J, Christensen AE, Nellemann B and Christensen B: Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity. Am J Physiol Endocrinol Metab. 313:E721–E730. 2017. View Article : Google Scholar : PubMed/NCBI | |
Satapati S, Kucejova B, Duarte JAG, Fletcher JA, Reynolds L, Sunny NE, He T, Nair LA, Livingston KA, Fu X, et al: Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest. 125:4447–4462. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim HY, Kwon WY, Kim YA, Oh YJ, Yoo SH, Lee MH, Bae JY, Kim JM and Yoo YH: Polychlorinated biphenyls exposure-induced insulin resistance is mediated by lipid droplet enlargement through Fsp27. Arch Toxicol. 91:2353–2363. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Remon J, Morán T, Majem M, Reguart N, Dalmau E, Márquez-Medina D and Lianes P: Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: A new era begins. Cancer Treat Rev. 40:93–101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Juchum M, Günther M and Laufer SA: Fighting cancer drug resistance: Opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resist Updat. 20:12–28. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 350:2129–2139. 2004. View Article : Google Scholar : PubMed/NCBI | |
Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, et al: EGF receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 101:13306–13311. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wen C, Xu G, He S, Huang Y, Shi J, Wu L and Zhou H: Screening Circular RNAs Related to Acquired Gefitinib Resistance in Non-small Cell Lung Cancer Cell Lines. J Cancer. 11:3816–3826. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Higashisaka K, Shintani T, Maki A, Hanamuro S, Haga Y, Maeda S, Tsujino H, Nagano K, Fujio Y, et al: Progesterone receptor membrane component 1 leads to erlotinib resistance, initiating crosstalk of Wnt/β-catenin and NF-κB pathways, in lung adenocarcinoma cells. Sci Rep. 10:47482020. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Liu WR, Zhang B, Zhang LM, Li CG, Liu C, Zhang H, Huo YS, Ma YC, Tian PF, et al: lncRNA H19 downregulation confers erlotinib resistance through upregulation of PKM2 and phosphorylation of AKT in EGFR-mutant lung cancers. Cancer Lett. 486:58–70. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu JY, Wu SG, Yang CH, Chang YL, Chang YC, Hsu YC, Shih JY and Yang PC: Comparison of gefitinib and erlotinib in advanced NSCLC and the effect of EGFR mutations. Lung Cancer. 72:205–212. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee CK, Brown C, Gralla RJ, Hirsh V, Thongprasert S, Tsai CM, Tan EH, Ho JC, Chu T, Zaatar A, et al: Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: A meta-analysis. J Natl Cancer Inst. 105:595–605. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kasahara K, Arao T, Sakai K, Matsumoto K, Sakai A, Kimura H, Sone T, Horiike A, Nishio M, Ohira T, et al: Impact of serum hepatocyte growth factor on treatment response to epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small cell lung adenocarcinoma. Clin Cancer Res. 16:4616–4624. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Wang Q, Li D, Wei X, Jia Y, Zhang Z, Ai B, Cao X, Guo T and Liao Y: Co-administration of 20(S)-protopanaxatriol (g-PPT) and EGFR-TKI overcomes EGFR-TKI resistance by decreasing SCD1 induced lipid accumulation in non-small cell lung cancer. J Exp Clin Canc Res. 38:1292019. View Article : Google Scholar | |
Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B, Wagner B, Karas M and Daum G: Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: Lipidome meets proteome. Biochim Biophys Acta. 1811:1165–1176. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bartz R, Li WH, Venables B, Zehmer JK, Roth MR, Welti R, Anderson RG, Liu P and Chapman KD: Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res. 48:837–847. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vrablik TL, Petyuk VA, Larson EM, Smith RD and Watts JL: Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein. Biochim Biophys Acta. 1851:1337–1345. 2015. View Article : Google Scholar : PubMed/NCBI | |
Prévost C, Sharp ME, Kory N, Lin Q, Voth GA, Farese RV Jr and Walther TC: Mechanism and Determinants of Amphipathic Helix-Containing Protein Targeting to Lipid Droplets. Dev Cell. 44:73–86. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Chen Z, Wu Y, Tsukui T, Ma X, Zhang X, Chiba H and Hui SP: Separating and Profiling Phosphatidylcholines and Triglycerides from Single Cellular Lipid Droplet by In-Tip Solvent Microextraction Mass Spectrometry. Anal Chem. 91:4466–4471. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wilfling F, Thiam AR, Olarte MJ, Wang J, Beck R, Gould TJ, Allgeyer ES, Pincet F, Bewersdorf J, Farese RV Jr and Walther TC: Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife. 3:e016072014. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Becuwe M, Housden BE, Chitraju C, Porras AJ, Graham MM, Liu XN, Thiam AR, Savage DB, Agarwal AK, et al: Seipin is required for converting nascent to mature lipid droplets. Elife. 5:e165822016. View Article : Google Scholar : PubMed/NCBI | |
Sturley SL and Hussain MM: Lipid droplet formation on opposing sides of the endoplasmic reticulum. J Lipid Res. 53:1800–1810. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gibbons GF, Islam K and Pease RJ: Mobilisation of triacylglycerol stores. Biochim Biophys Acta. 1483:37–57. 2000. View Article : Google Scholar : PubMed/NCBI | |
Romanauska A and Kohler A: The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets. Cell. 174:700–715. 2018. View Article : Google Scholar : PubMed/NCBI | |
Soltysik K, Ohsaki Y, Tatematsu T, Cheng JL and Fujimoto T: Nuclear lipid droplets derive from a lipoprotein precursor and regulate phosphatidylcholine synthesis. Nat Commun. 10:4732019. View Article : Google Scholar : PubMed/NCBI | |
Liao Y, Tham DKL, Liang FX, Chang J, Wei Y, Sudhir PR, Sall J, Ren SJ, Chicote JU, Arnold LL, et al: Mitochondrial lipid droplet formation as a detoxification mechanism to sequester and degrade excessive urothelial membranes. Mol Biol Cell. 30:2969–2984. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, et al: Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 306:1383–1386. 2004. View Article : Google Scholar : PubMed/NCBI | |
Reid BN, Ables GP, Otlivanchik OA, Schoiswohl G, Zechner R, Blaner WS, Goldberg IJ, Schwabe RF, Chua SC Jr and Huang LS: Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J Biol Chem. 283:13087–13099. 2008. View Article : Google Scholar : PubMed/NCBI | |
Holm C, Kirchgessner TG, Svenson KL, Fredrikson G, Nilsson S, Miller CG, Shively JE, Heinzmann C, Sparkes RS, Mohandas T, et al: Hormone-sensitive lipase: Sequence, expression, and chromosomal localization to 19 cent-q13.3. Science. 241:1503–1506. 1988. View Article : Google Scholar : PubMed/NCBI | |
Karlsson M, Contreras JA, Hellman U, Tornqvist H and Holm C: cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem. 272:27218–27223. 1997. View Article : Google Scholar : PubMed/NCBI | |
Young SG and Zechner R: Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 27:459–484. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A and Madeo F: FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15:279–291. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M and Sul HS: Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol. 293:G1–G4. 2007. View Article : Google Scholar : PubMed/NCBI | |
Settembre C and Ballabio A: Lysosome: Regulator of lipid degradation pathways. Trends Cell Biol. 24:743–750. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aboumrad MH, Horn RC Jr and Fine G: Lipid-secreting mammary carcinoma. Report of a case associated with Paget's disease of the nipple. Cancer. 16:521–525. 1963. View Article : Google Scholar : PubMed/NCBI | |
Ramos CV and Taylor HB: Lipid-rich carcinoma of the breast. A clinicopathologic analysis of 13 examples. Cancer. 33:812–819. 1974. View Article : Google Scholar : PubMed/NCBI | |
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI | |
Huang WC, Li X, Liu J, Lin J and Chung LWK: Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol Cancer Res. 10:133–142. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Baenke F, Peck B, Miess H and Schulze A: Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 6:1353–1363. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zaytseva YY, Harris JW, Mitov MI, Kim JT, Butterfield DA, Lee EY, Weiss HL, Gao T and Evers BM: Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration. Oncotarget. 6:18891–18904. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Crowther J, Pastor T, Abbasi Asbagh L, Baietti MF, De Troyer M, Vazquez I, Talebi A, Renzi F, Dehairs J, et al: Loss of Chromosome 8p Governs Tumor Progression and Drug Response by Altering Lipid Metabolism. Cancer Cell. 29:751–766. 2016. View Article : Google Scholar : PubMed/NCBI | |
Röhrig F and Schulze A: The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI | |
Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL and Schulze A: SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8:224–236. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu Y: Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 9:230–234. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hager MH, Solomon KR and Freeman MR: The role of cholesterol in prostate cancer. Curr Opin Clin Nutr Metab Care. 9:379–385. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Xi Q and Wu G: Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Med. 5:1599–1606. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gansler TS, Hardman W III, Hunt DA, Schaffel S and Hennigar RA: Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum Pathol. 28:686–692. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fujimoto M, Yoshizawa A, Sumiyoshi S, Sonobe M, Menju T, Hirata M, Momose M, Date H and Haga H: Adipophilin expression in lung adenocarcinoma is associated with apocrine-like features and poor clinical prognosis: An immunohistochemical study of 328 cases. Histopathology. 70:232–241. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang XD, Li W, Zhang N, Hou YL, Niu ZQ, Zhong YJ, Zhang YP and Yang SY: Identification of adipophilin as a potential diagnostic tumor marker for lung adenocarcinoma. Int J Clin Exp Med. 7:1190–1196. 2014.PubMed/NCBI | |
Rak S, De Zan T, Stefulj J, Kosović M, Gamulin O and Osmak M: FTIR spectroscopy reveals lipid droplets in drug resistant laryngeal carcinoma cells through detection of increased ester vibrational bands intensity. Analyst (Lond). 139:3407–3415. 2014. View Article : Google Scholar | |
Qiu B, Ackerman D, Sanchez DJ, Li B, Ochocki JD, Grazioli A, Bobrovnikova-Marjon E, Diehl JA, Keith B and Simon MC: HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma. Cancer Discov. 5:652–667. 2015. View Article : Google Scholar : PubMed/NCBI | |
Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT and Viola JP: Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 68:1732–1740. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bozza PT and Viola JP: Lipid droplets in inflammation and cancer. Prostaglandins Leukot Essent Fatty Acids. 82:243–250. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nieva C, Marro M, Santana-Codina N, Rao S, Petrov D and Sierra A: The lipid phenotype of breast cancer cells characterized by Raman microspectroscopy: Towards a stratification of malignancy. PLoS One. 7:e464562012. View Article : Google Scholar : PubMed/NCBI | |
Fujimoto T, Kogo H, Ishiguro K, Tauchi K and Nomura R: Caveolin-2 is targeted to lipid droplets, a new ‘membrane domain’ in the cell. J Cell Biol. 152:1079–1085. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Bozza PT, Tzizik DM, Gray JP, Cassara J, Dvorak AM and Weller PF: Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies. Am J Pathol. 152:759–769. 1998.PubMed/NCBI | |
Yu W, Cassara J and Weller PF: Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells. Blood. 95:1078–1085. 2000. View Article : Google Scholar : PubMed/NCBI | |
Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI | |
Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C and Flavell RA: Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 13:759–771. 2013. View Article : Google Scholar : PubMed/NCBI | |
Melo RCN and Weller PF: Lipid droplets in leukocytes: Organelles linked to inflammatory responses. Exp Cell Res. 340:193–197. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heller S, Cable C, Penrose H, Makboul R, Biswas D, Cabe M, Crawford SE and Savkovic SD: Intestinal inflammation requires FOXO3 and prostaglandin E2-dependent lipogenesis and elevated lipid droplets. Am J Physiol Gastrointest Liver Physiol. 310:G844–G854. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rigas B, Goldman IS and Levine L: Altered eicosanoid levels in human colon cancer. J Lab Clin Med. 122:518–523. 1993.PubMed/NCBI | |
Wang D and Dubois RN: Cyclooxygenase-2: A potential target in breast cancer. Semin Oncol. 31 (Suppl 3):64–73. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hambek M, Baghi M, Wagenblast J, Schmitt J, Baumann H and Knecht R: Inverse correlation between serum PGE2 and T classification in head and neck cancer. Head Neck 29 (Spec). 244–248. 2007. View Article : Google Scholar | |
McLemore TL, Hubbard WC, Litterst CL, Liu MC, Miller S, McMahon NA, Eggleston JC and Boyd MR: Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Res. 48:3140–3147. 1988.PubMed/NCBI | |
Yan M, Myung SJ, Fink SP, Lawrence E, Lutterbaugh J, Yang P, Zhou X, Liu D, Rerko RM, Willis J, et al: 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors. Proc Natl Acad Sci USA. 106:9409–9413. 2009. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Lopez N and Singh R: Autophagy and Lipid Droplets in the Liver. Annu Rev Nutr. 35:215–237. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schulze RJ, Sathyanarayan A and Mashek DG: Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids 1862B. 1178–1187. 2017. View Article : Google Scholar | |
Zechner R, Madeo F and Kratky D: Cytosolic lipolysis and lipophagy: Two sides of the same coin. Nat Rev Mol Cell Biol. 18:671–684. 2017. View Article : Google Scholar : PubMed/NCBI | |
Herms A, Bosch M, Reddy BJ, Schieber NL, Fajardo A, Rupérez C, Fernández-Vidal A, Ferguson C, Rentero C, Tebar F, et al: AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun. 6:71762015. View Article : Google Scholar : PubMed/NCBI | |
Cabodevilla AG, Sánchez-Caballero L, Nintou E, Boiadjieva VG, Picatoste F, Gubern A and Claro E: Cell survival during complete nutrient deprivation depends on lipid droplet-fueled β-oxidation of fatty acids. J Biol Chem. 288:27777–27788. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cotte AK, Aires V, Fredon M, Limagne E, Derangère V, Thibaudin M, Humblin E, Scagliarini A, de Barros JP, Hillon P, et al: Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat Commun. 9:3222018. View Article : Google Scholar : PubMed/NCBI | |
Penrose H, Heller S, Cable C, Makboul R, Chadalawada G, Chen Y, Crawford SE and Savkovic SD: Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6. Biochem Biophys Res Commun. 469:370–376. 2016. View Article : Google Scholar : PubMed/NCBI | |
Müller MR and Rao A: NFAT, immunity and cancer: A transcription factor comes of age. Nat Rev Immunol. 10:645–656. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jauliac S, López-Rodriguez C, Shaw LM, Brown LF, Rao A and Toker A: The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol. 4:540–544. 2002. View Article : Google Scholar : PubMed/NCBI | |
Germann S, Gratadou L, Zonta E, Dardenne E, Gaudineau B, Fougère M, Samaan S, Dutertre M, Jauliac S and Auboeuf D: Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor. Oncogene. 31:4536–4549. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Sinha M, Luxon BA, Bresnick AR and O'Connor KL: Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. J Biol Chem. 284:1484–1494. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim DH, Kim KS and Ramakrishna S: NFAT5 promotes in vivo development of murine melanoma metastasis. Biochem Biophys Res Commun. 505:748–754. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo K and Jin F: NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression. Biochem Biophys Res Commun. 465:644–649. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kuper C, Beck FX and Neuhofer W: NFAT5-mediated expression of S100A4 contributes to proliferation and migration of renal carcinoma cells. Front Physiol. 5:2932014. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Li Z, Zhou S, Xiao S and Yu P: miR-194 suppresses high glucose-induced non-small cell lung cancer cell progression by targeting NFAT5. Thorac Cancer. 10:1051–1059. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tomin T, Fritz K, Gindlhuber J, Waldherr L, Pucher B, Thallinger GG, Nomura DK, Schittmayer M and Birner-Gruenberger R: Deletion of Adipose Triglyceride Lipase Links Triacylglycerol Accumulation to a More-Aggressive Phenotype in A549 Lung Carcinoma Cells. J Proteome Res. 17:1415–1425. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Song F, Zhao X, Jiang H, Wu X, Wang B, Zhou M, Tian M, Shi B, Wang H, et al: EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Mol Cancer. 16:1272017. View Article : Google Scholar : PubMed/NCBI | |
Makinoshima H, Takita M, Matsumoto S, Yagishita A, Owada S, Esumi H and Tsuchihara K: Epidermal growth factor receptor (EGFR) signaling regulates global metabolic pathways in EGFR-mutated lung adenocarcinoma. J Biol Chem. 289:20813–20823. 2014. View Article : Google Scholar : PubMed/NCBI | |
De Rosa V, Iommelli F, Monti M, Fonti R, Votta G, Stoppelli MP and Del Vecchio S: Reversal of Warburg Effect and Reactivation of Oxidative Phosphorylation by Differential Inhibition of EGFR Signaling Pathways in Non-Small Cell Lung Cancer. Clin Cancer Res. 21:5110–5120. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liu S, Wu C, Huang W, Xu B, Lian S, Wang L, Yue S, Chen N and Zhu Z: PD-1-Mediated PI3K/Akt/mTOR, Caspase 9/Caspase 3 and ERK Pathways Are Involved in Regulating the Apoptosis and Proliferation of CD4+ and CD8+ T Cells During BVDV Infection in vitro. Front Immunol. 11:4672020. View Article : Google Scholar : PubMed/NCBI | |
Amri J, Molaee N and Karami H; J A, : Up-Regulation of MiRNA-125a-5p Inhibits Cell Proliferation and Increases EGFR-TKI Induced Apoptosis in Lung Cancer Cells. Asian Pac J Cancer Prev. 20:3361–3367. 2019. View Article : Google Scholar : PubMed/NCBI | |
Efeyan A, Comb WC and Sabatini DM: Nutrient-sensing mechanisms and pathways. Nature. 517:302–310. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hardie DG, Ross FA and Hawley SA: AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 13:251–262. 2012. View Article : Google Scholar : PubMed/NCBI | |
Garcia D and Shaw RJ: AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol Cell. 66:789–800. 2017. View Article : Google Scholar : PubMed/NCBI | |
Aramburu J, Ortells MC, Tejedor S, Buxade M and Lopez-Rodriguez C: Transcriptional regulation of the stress response by mTOR. Sci Signal. 7:re22014. View Article : Google Scholar : PubMed/NCBI | |
Muoio DM, Seefeld K, Witters LA and Coleman RA: AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: Evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J. 338:783–791. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jeon SM, Chandel NS and Hay N: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 485:661–665. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wendel AA, Lewin TM and Coleman RA: Glycerol-3-phosphate acyltransferases: Rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta. 1791:501–506. 2009. View Article : Google Scholar : PubMed/NCBI | |
Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, et al: Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 39:171–183. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, Gorgun C, Kwiatkowski DJ, Hotamisligil GS, Lee CH, et al: Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14:21–32. 2011. View Article : Google Scholar : PubMed/NCBI | |
Owen JL, Zhang Y, Bae SH, Farooqi MS, Liang G, Hammer RE, Goldstein JL and Brown MS: Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc Natl Acad Sci USA. 109:16184–16189. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nguyen TB, Louie SM, Daniele JR, Tran Q, Dillin A, Zoncu R, Nomura DK and Olzmann JA: DGAT1-Dependent Lipid Droplet Biogenesis Protects Mitochondrial Function during Starvation-Induced Autophagy. Dev Cell. 42:9–21. 2017. View Article : Google Scholar : PubMed/NCBI | |
Seo AY, Lau PW, Feliciano D, Sengupta P, Gros MAL, Cinquin B, Larabell CA and Lippincott-Schwartz J: AMPK and vacuole-associated Atg14p orchestrate mu-lipophagy for energy production and long-term survival under glucose starvation. Elife. 6:e216902017. View Article : Google Scholar : PubMed/NCBI | |
Henne WM, Reese ML and Goodman JM: The assembly of lipid droplets and their roles in challenged cells. EMBO J. 37:e989472018. View Article : Google Scholar : PubMed/NCBI | |
Hariri H, Rogers S, Ugrankar R, Liu YL, Feathers JR and Henne WM: Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. EMBO Rep. 19:57–72. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schaffer JE: Lipotoxicity: When tissues overeat. Curr Opin Lipidol. 14:281–287. 2003. View Article : Google Scholar : PubMed/NCBI | |
Petan T, Jarc E and Jusovic M: Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules. 23:19412018. View Article : Google Scholar | |
Herms A, Bosch M, Ariotti N, Reddy BJ, Fajardo A, Fernández-Vidal A, Alvarez-Guaita A, Fernández-Rojo MA, Rentero C, Tebar F, et al: Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity. Curr Biol. 23:1489–1496. 2013. View Article : Google Scholar : PubMed/NCBI | |
Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G and Migliaccio A: ROS in cancer therapy: The bright side of the moon. Exp Mol Med. 52:192–203. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li R, Jia Z and Trush MA: Defining ROS in Biology and Medicine. React Oxyg Species (Apex). 1:9–21. 2016.PubMed/NCBI | |
Ramzan R, Vogt S and Kadenbach B: Stress-mediated generation of deleterious ROS in healthy individuals - role of cytochrome c oxidase. J Mol Med (Berl). 98:651–657. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang S and Lian G: ROS and diseases: Role in metabolism and energy supply. Mol Cell Biochem. 467:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zhao S, Yao Z, Wang L, Shao J, Chen A, Zhang F and Zheng S: Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol. 11:322–334. 2017. View Article : Google Scholar : PubMed/NCBI | |
Müller G, Wied S, Jung C and Over S: Hydrogen peroxide-induced translocation of glycolipid-anchored (c)AMP-hydrolases to lipid droplets mediates inhibition of lipolysis in rat adipocytes. Br J Pharmacol. 154:901–913. 2008. View Article : Google Scholar : PubMed/NCBI | |
Blas-García A, Apostolova N, Ballesteros D, Monleón D, Morales JM, Rocha M, Victor VM and Esplugues JV: Inhibition of mitochondrial function by efavirenz increases lipid content in hepatic cells. Hepatology. 52:115–125. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sekiya M, Hiraishi A, Touyama M and Sakamoto K: Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells. Biochem Biophys Res Commun. 375:602–607. 2008. View Article : Google Scholar : PubMed/NCBI | |
Krawczyk SA, Haller JF, Ferrante T, Zoeller RA and Corkey BE: Reactive Oxygen Species Facilitate Translocation of Hormone Sensitive Lipase to the Lipid Droplet During Lipolysis in Human Differentiated Adipocytes. Plos One. 7:e349042012. View Article : Google Scholar : PubMed/NCBI | |
Velázquez AP, Tatsuta T, Ghillebert R, Drescher I and Graef M: Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation. J Cell Biol. 212:621–631. 2016. View Article : Google Scholar : PubMed/NCBI | |
Welte MA: How Brain Fat Conquers Stress. Cell. 163:269–270. 2015. View Article : Google Scholar : PubMed/NCBI | |
Szegezdi E, Fitzgerald U and Samali A: Caspase-12 and ER-stress-mediated apoptosis: The story so far. Ann N Y Acad Sci. 1010:186–194. 2003. View Article : Google Scholar : PubMed/NCBI | |
Turró S, Ingelmo-Torres M, Estanyol JM, Tebar F, Fernández MA, Albor CV, Gaus K, Grewal T, Enrich C and Pol A: Identification and characterization of associated with lipid droplet protein 1: A novel membrane-associated protein that resides on hepatic lipid droplets. Traffic. 7:1254–1269. 2006. View Article : Google Scholar : PubMed/NCBI | |
Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, Durchschlag M, Joza N, Pierron G, van Endert P, et al: Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 28:578–590. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kalinski P: Regulation of immune responses by prostaglandin E2. J Immunol. 188:21–28. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao G, Chen FJ, Zhou L, Su L, Xu D, Xu L and Li P: Control of lipid droplet fusion and growth by CIDE family proteins. Biochim Biophys Acta Mol Cell Biol Lipids 1862B. 1197–1204. 2017. View Article : Google Scholar | |
Liu K, Zhou S, Kim JY, Tillison K, Majors D, Rearick D, Lee JH, Fernandez-Boyanapalli RF, Barricklow K, Houston MS, et al: Functional analysis of FSP27 protein regions for lipid droplet localization, caspase-dependent apoptosis, and dimerization with CIDEA. Am J Physiol Endocrinol Metab. 297:E1395–E1413. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bischof J, Salzmann M, Streubel MK, Hasek J, Geltinger F, Duschl J, Bresgen N, Briza P, Haskova D, Lejskova R, et al: Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets. Cell Death Discov. 3:170162017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Yang L, Ding Y, Wang Y, Lan L, Ma Q, Chi X, Wei P, Zhao Y, Steinbüchel A, et al: Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress. Nat Commun. 8:159792017. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Li Y, Yang Z, Xu W, Yang Y and Tan X: ROS mediated EGFR/MEK/ERK/HIF-1α Loop Regulates Glucose metabolism in pancreatic cancer. Biochem Biophys Res Commun. 500:873–878. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang TH, Chen CC, Huang KY, Shih YM and Chen CY: High levels of EGFR prevent sulforaphane-induced reactive oxygen species-mediated apoptosis in non-small-cell lung cancer cells. Phytomedicine. 64:1529262019. View Article : Google Scholar : PubMed/NCBI | |
Bollu LR, Katreddy RR, Blessing AM, Pham N, Zheng B, Wu X and Weihua Z: Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget. 6:34992–35003. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ali A, Levantini E, Teo JT, Goggi J, Clohessy JG, Wu CS, Chen L, Yang H, Krishnan I, Kocher O, et al: Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer. EMBO Mol Med. 10:e83132018. View Article : Google Scholar : PubMed/NCBI | |
Thun MJ, Henley SJ and Patrono C: Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst. 94:252–266. 2002. View Article : Google Scholar : PubMed/NCBI | |
Thun MJ, Jacobs EJ and Patrono C: The role of aspirin in cancer prevention. Nat Rev Clin Oncol. 9:259–267. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ali R, Toh HC and Chia WK; ASCOLT Trial Investigators, : The utility of Aspirin in Dukes C and High Risk Dukes B Colorectal cancer - The ASCOLT study: Study Protocol for a randomized controlled trial. Trials. 12:2612011. View Article : Google Scholar : PubMed/NCBI | |
Jafari N, Drury J, Morris AJ, Onono FO, Stevens PD, Gao T, Liu J, Wang C, Lee EY, Weiss HL, et al: De novo fatty acid synthesis-driven sphingolipid metabolism promotes metastatic potential of colorectal cancer. Mol Cancer Res. Aug 28–2018.(Epub ahead of print). https://doi.org/10.1158/1541-7786.MCR-18-0199. PubMed/NCBI | |
Heuer TS, Ventura R, Mordec K, Lai J, Fridlib M, Buckley D and Kemble G: FASN Inhibition and Taxane Treatment Combine to Enhance Anti-tumor Efficacy in Diverse Xenograft Tumor Models through Disruption of Tubulin Palmitoylation and Microtubule Organization and FASN Inhibition-Mediated Effects on Oncogenic Signaling and Gene Expression. EBioMedicine. 16:51–62. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tsai TH, Chen E, Li L, Saha P, Lee HJ, Huang LS, Shelness GS, Chan L and Chang BH: The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy. 13:1130–1144. 2017. View Article : Google Scholar : PubMed/NCBI |