1
|
Kwon T, Chandimali N, Huynh DL, Zhang JJ,
Kim N, Bak Y, Yoon DY, Yu DY, Lee JC, Gera M, et al: BRM270
inhibits cancer stem cell maintenance via microRNA regulation in
chemoresistant A549 lung adenocarcinoma cells. Cell Death Dis.
9:2442018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Toge M, Yokoyama S, Kato S, Sakurai H,
Senda K, Doki Y, Hayakawa Y, Yoshimura N and Saiki I: Critical
contribution of MCL-1 in EMT-associated chemo-resistance in A549
non-small cell lung cancer. Int J Oncol. 46:1844–1848. 2015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu X, Han X, Wan X, He C, Wang Y, Mao A,
Yu F, Zhou T, Feng L, Zhang P, et al: SPZ1 is critical for
chemoresistance and aggressiveness in drug-resistant breast cancer
cells. Biochem Pharmacol. 156:43–51. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hudson AL, Weir C, Moon E, Harvie R, Klebe
S, Clarke SJ, Pavlakis N and Howell VM: Establishing a panel of
chemo-resistant mesothelioma models for investigating
chemo-resistance and identifying new treatments for mesothelioma.
Sci Rep. 4:61522014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Roy L and Cowden Dahl KD: Can stemness and
chemoresistance be therapeutically targeted via signaling pathways
in ovarian cancer? Cancers (Basel). 10:2412018. View Article : Google Scholar
|
6
|
Kim TW, Lee SY, Kim M, Cheon C, Jang BH,
Shin YC and Ko SG: DSGOST regulates resistance via activation of
autophagy in gastric cancer. Cell Death Dis. 9:6492018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen Y, Zhu J and Zhang W: Antitumor
effect of traditional Chinese herbal medicines against lung cancer.
Anticancer Drugs. 25:983–991. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ko JK and Auyeung KK: Target-oriented
mechanisms of novel herbal therapeutics in the chemotherapy of
gastrointestinal cancer and inflammation. Curr Pharm Des. 19:48–66.
2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang Q, Acharya N, Liu Z, Zhou X, Cromie
M, Zhu J and Gao W: Enhanced anticancer effects of Scutellaria
barbata D. Don in combination with traditional Chinese medicine
components on non-small cell lung cancer cells. J Ethnopharmacol.
217:140–151. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang H, Wang F, Wu S, Liu Z, Li T, Mao L,
Zhang J, Li C, Liu C and Yang Y: Traditional herbal
medicine-derived sulforaphene promotes mitophagic cell death in
lymphoma cells through CRM1-mediated p62/SQSTM1 accumulation and
AMPK activation. Chem Biol Interact. 281:11–23. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chandimali N, Huynh DL, Jin WY and Kwon T:
Combination effects of hispidin and gemcitabine via inhibition of
stemness in pancreatic cancer stem cells. Anticancer Res.
38:3967–3975. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mongre RK, Sodhi SS, Ghosh M, Kim JH, Kim
N, Park YH, Kim SJ, Heo YJ, Sharma N and Jeong DK: The novel
inhibitor BRM270 downregulates tumorigenesis by suppression of
NF-KB signaling cascade in MDR-induced stem like cancer-initiating
cells. Int J Oncol. 46:2573–2585. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jeon HY, Park CG, Ham SW, Choi SH, Lee SY,
Kim JY, Seo S, Jin X, Kim JK, Eun K, et al: BRM270, a compound from
natural plant extracts, inhibits glioblastoma stem cell properties
and glioblastoma recurrence. J Med Food. 20:838–845. 2017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Huynh DL, Koh H, Chandimali N, Zhang JJ,
Kim N, Kang TY, Ghosh M, Gera M, Park YH, Kwon T and Jeong DK:
BRM270 inhibits the proliferation of CD44 positive pancreatic
ductal adenocarcinoma cells via downregulation of sonic hedgehog
signaling. Evid Based Complement Alternat Med. 2019:86204692019.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Choi BY, Joo JC, Lee YK, Jang IS, Park SJ
and Park YJ: Anti-cancer effect of Scutellaria baicalensis
in combination with cisplatin in human ovarian cancer cell. BMC
Complement Altern Med. 17:2772017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lu C, Wang H, Chen S, Yang R, Li H and
Zhang G: Baicalein inhibits cell growth and increases cisplatin
sensitivity of A549 and H460 cells via miR-424-3p and targeting
PTEN/PI3K/Akt pathway. J Cell Mol Med. 22:2478–2487. 2018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Y, Wang H, Zhou R, Zhong W, Lu S, Ma
Z and Chai Y: Baicalin inhibits human osteosarcoma cells invasion,
metastasis, and anoikis resistance by suppressing the transforming
growth factor-β1-induced epithelial-to-mesenchymal transition.
Anticancer Drugs. 28:581–587. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao R, Gao X, Cai Y, Shao X, Jia G, Huang
Y, Qin X, Wang J and Zheng X: Antitumor activity of Portulaca
oleracea L. polysaccharides against cervical carcinoma in vitro
and in vivo. Carbohydr Polym. 96:376–383. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Koh H, Park H, Chandimali N, Huynh DL,
Zhang JJ, Ghosh M, Gera M, Kim N, Bak Y, Yoon DY, et al:
MicroRNA-128 suppresses paclitaxel-resistant lung cancer by
inhibiting MUC1-C and BMI-1 in cancer stem cells. Oncotarget.
8:110540–110551. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pazhouhandeh M, Samiee F, Boniadi T,
Khedmat AF, Vahedi E, Mirdamadi M, Sigari N, Siadat SD, Vaziri F,
Fateh A, et al: Comparative network analysis of patients with
non-small cell lung cancer and smokers for representing potential
therapeutic targets. Sci Rep. 7:138122017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lam WK and Watkins DN: Lung cancer: Future
directions. Respirology. 12:471–477. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kwon T, Rho JK, Lee JC, Park YH, Shin HJ,
Cho S, Kang YK, Kim BY, Yoon DY and Yu DY: An important role for
peroxiredoxin II in survival of A549 lung cancer cells resistant to
gefitinib. Exp Mol Med. 47:e1652015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ham SY, Kwon T, Bak Y, Yu JH, Hong J, Lee
SK, Yu DY and Yoon DY: Mucin 1-mediated chemo-resistance in lung
cancer cells. Oncogenesis. 5:e1852016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lin Y and Wu Z: MicroRNA-128 inhibits
proliferation and invasion of glioma cells by targeting COX-2.
Gene. 658:63–69. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liang X, Shangguan W, Zhang M, Mei S, Wang
L and Yang R: MiR-128 enhances dendritic cell-mediated anti-tumor
immunity via targeting of p38. Mol Med Rep. 16:1307–1313. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu X, Liang Z, Gao K, Li H, Zhao G, Wang
S and Fang J: MicroRNA-128 inhibits EMT of human osteosarcoma cells
by directly targeting integrin α2. Tumour Biol. 37:7951–7957. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G,
Fu S, Zhang Y, Feng K and Feng Y: MicroRNA-128 plays a critical
role in human non-small cell lung cancer tumourigenesis,
angiogenesis and lymphangiogenesis by directly targeting vascular
endothelial growth factor-C. Eur J Cancer. 50:2336–2350. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhao D, Han W, Liu X, Cui D and Chen Y:
MicroRNA-128 promotes apoptosis in lung cancer by directly
targeting NIMA-related kinase 2. Thorac Cancer. 8:304–311. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Jiang J, Feng X, Zhou W, Wu Y and Yang Y:
MiR-128 reverses the gefitinib resistance of the lung cancer stem
cells by inhibiting the c-met/PI3K/AKT pathway. Oncotarget.
7:73188–73199. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sikander M, Hafeez BB, Malik S, Alsayari
A, Halaweish FT, Yallapu MM, Chauhan SC and Jaggi M: Cucurbitacin D
exhibits potent anti-cancer activity in cervical cancer. Sci Rep.
6:365942016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang J, Zhang Y, Liu S, Zhang Q, Wang Y,
Tong L, Chen X, Ji Y, Shang Q, Xu B, et al: Metadherin confers
chemoresistance of cervical cancer cells by inducing autophagy and
activating ERK/NF-κB pathway. Tumour Biol. 34:2433–2440. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Burzawa J, Gonzales N and Frumovitz M:
Challenges in the diagnosis and management of cervical
neuroendocrine carcinoma. Expert Rev Anticancer Ther. 15:805–810.
2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Colombo N and Peiretti M: Critical review
of neoadjuvant chemotherapy followed by surgery for locally
advanced cervical cancer. Int J Gynecol Cancer. 20 (11 Suppl
2):S47–S48. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chhabra R: Cervical cancer stem cells:
Opportunities and challenges. J Cancer Res Clin Oncol.
141:1889–1897. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Huang R and Rofstad EK: Cancer stem cells
(CSCs), cervical CSCs and targeted therapies. Oncotarget.
8:35351–35367. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang L, Guo H, Lin C, Yang L and Wang X:
Enrichment and characterization of cancer stemlike cells from a
cervical cancer cell line. Mol Med Rep. 9:2117–2123. 2014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Chandimali N, Sun HN, Park YH and Kwon T:
BRM270 suppresses cervical cancer stem cell characteristics and
progression by inhibiting SOX2. In Vivo. 34:1085–1094. 2020.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Balahmar RM, Boocock DJ, Coveney C, Ray S,
Vadakekolathu J, Regad T, Ali S and Sivasubramaniam S:
Identification and characterisation of NANOG+/
OCT-4high/SOX2+ doxorubicin-resistant stem-like cells
from transformed trophoblastic cell lines. Oncotarget. 9:7054–7065.
2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Piva M, Domenici G, Iriondo O, Rábano M,
Simões BM, Comaills V, Barredo I, López-Ruiz JA, Zabalza I, Kypta R
and Vivanco Md: Sox2 promotes tamoxifen resistance in breast cancer
cells. EMBO Mol Med. 6:66–79. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li Y, Chen K, Li L, Li R, Zhang J and Ren
W: Overexpression of SOX2 is involved in paclitaxel resistance of
ovarian cancer via the PI3K/Akt pathway. Tumour Biol. 36:9823–9828.
2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jin Y, Jiang Z, Guan X, Chen Y, Tang Q,
Wang G and Wang X: miR-450b-5p suppresses stemness and the
development of chemoresistance by targeting SOX2 in colorectal
cancer. DNA Cell Biol. 35:249–256. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Manzo-Merino J, Contreras-Paredes A,
Vazquez-Ulloa E, Rocha-Zavaleta L, Fuentes-Gonzalez AM and Lizano
M: The role of signaling pathways in cervical cancer and molecular
therapeutic targets. Arch Med Res. 45:525–539. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Safa AR, Saadatzadeh MR, Cohen-Gadol AA,
Pollok KE and Bijangi-Vishehsaraei K: Emerging targets for
glioblastoma stem cell therapy. J Biomed Res. 30:19–31. 2016.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhu JJ and Wong ET: Personalized medicine
for glioblastoma: Current challenges and future opportunities. Curr
Mol Med. 13:358–367. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Stupp R, Hegi ME, Mason WP, van den Bent
MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B,
Belanger K, et al: Effects of radiotherapy with concomitant and
adjuvant temozolomide versus radiotherapy alone on survival in
glioblastoma in a randomised phase III study: 5-year analysis of
the EORTC-NCIC trial. Lancet Oncol. 10:459–466. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Garrido W, Rocha JD, Jaramillo C,
Fernandez K, Oyarzun C, San Martin R and Quezada C: Chemoresistance
in high-grade gliomas: Relevance of adenosine signalling in
stem-like cells of glioblastoma multiforme. Curr Drug Targets.
15:931–942. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bischof J, Westhoff MA, Wagner JE,
Halatsch ME, Trentmann S, Knippschild U, Wirtz CR and Burster T:
Cancer stem cells: The potential role of autophagy, proteolysis,
and cathepsins in glioblastoma stem cells. Tumour Biol.
39:10104283176922272017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Uribe D, Torres A, Rocha JD, Niechi I,
Oyarzún C, Sobrevia L, San Martín R and Quezada C: Multidrug
resistance in glioblastoma stem-like cells: Role of the hypoxic
microenvironment and adenosine signaling. Mol Aspects Med.
55:140–151. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Safari M and Khoshnevisan A: Cancer stem
cells and chemoresistance in glioblastoma multiform: A review
article. J Stem Cells. 10:271–285. 2015.PubMed/NCBI
|
50
|
Cioffi M, Trabulo SM, Sanchez-Ripoll Y,
Miranda-Lorenzo I, Lonardo E, Dorado J, Reis Vieira C, Ramirez JC,
Hidalgo M, Aicher A, et al: The miR-17-92 cluster counteracts
quiescence and chemoresistance in a distinct subpopulation of
pancreatic cancer stem cells. Gut. 64:1936–1948. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ju SY, Chiou SH and Su Y: Maintenance of
the stemness in CD44(+) HCT-15 and HCT-116 human colon cancer cells
requires miR-203 suppression. Stem Cell Res. 12:86–100. 2014.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Rosow DE, Liss AS, Strobel O, Fritz S,
Bausch D, Valsangkar NP, Alsina J, Kulemann B, Park JK, Yamaguchi
J, et al: Sonic hedgehog in pancreatic cancer: From bench to
bedside, then back to the bench. Surgery. 152 (3 Suppl 1):S19–S32.
2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Song L, Chen X, Wang P, Gao S, Qu C and
Liu L: Effects of baicalein on pancreatic cancer stem cells via
modulation of sonic hedgehog pathway. Acta Biochim Biophys Sin
(Shanghai). 50:586–596. 2018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Li SH, Fu J, Watkins DN, Srivastava RK and
Shankar S: Sulforaphane regulates self-renewal of pancreatic cancer
stem cells through the modulation of Sonic hedgehog-GLI pathway.
Mol Cell Biochem. 373:217–227. 2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhou W, Hao M, Du X, Chen K, Wang G and
Yang J: Advances in targeted therapy for osteosarcoma. Discov Med.
17:301–307. 2014.PubMed/NCBI
|
56
|
Kun-Peng Z, Xiao-Long M and Chun-Lin Z:
Overexpressed circPVT1, a potential new circular RNA biomarker,
contributes to doxorubicin and cisplatin resistance of osteosarcoma
cells by regulating ABCB1. Int J Biol Sci. 14:321–330. 2018.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Wang ZD, Wang RZ, Xia YZ, Kong LY and Yang
L: Reversal of multidrug resistance by icaritin in
doxorubicin-resistant human osteosarcoma cells. Chin J Nat Med.
16:20–28. 2018.PubMed/NCBI
|
58
|
Qi XT, Li YL, Zhang YQ, Xu T, Lu B, Fang
L, Gao JQ, Yu LS, Zhu DF, Yang B, et al: KLF4 functions as an
oncogene in promoting cancer stem cell-like characteristics in
osteosarcoma cells. Acta Pharmacol Sin. 40:546–555. 2019.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Vescovo T, Refolo G, Vitagliano G, Fimia
GM and Piacentini M: Molecular mechanisms of hepatitis C
virus-induced hepatocellular carcinoma. Clin Microbiol Infect.
22:853–861. 2016. View Article : Google Scholar : PubMed/NCBI
|
60
|
Wu Q, Chen JX, Chen Y, Cai LL, Wang XZ,
Guo WH and Zheng JF: The chemokine receptor CCR10 promotes
inflammation-driven hepatocarcinogenesis via PI3K/Akt pathway
activation. Cell Death Dis. 9:2322018. View Article : Google Scholar : PubMed/NCBI
|
61
|
Yan HX, Wu HP, Zhang HL, Ashton C, Tong C,
Wu H, Qian QJ, Wang HY and Ying QL: p53 promotes
inflammation-associated hepatocarcinogenesis by inducing HMGB1
release. J Hepatol. 59:762–768. 2013. View Article : Google Scholar : PubMed/NCBI
|
62
|
Huan HB, Wen XD, Chen XJ, Wu L, Wu LL,
Zhang L, Yang DP, Zhang X, Bie P, Qian C and Xia F: Sympathetic
nervous system promotes hepatocarcinogenesis by modulating
inflammation through activation of alpha1-adrenergic receptors of
Kupffer cells. Brain Behav Immun. 59:118–134. 2017. View Article : Google Scholar : PubMed/NCBI
|
63
|
Li C, Deng M, Hu J, Li X, Chen L, Ju Y,
Hao J and Meng S: Chronic inflammation contributes to the
development of hepatocellular carcinoma by decreasing miR-122
levels. Oncotarget. 7:17021–17034. 2016. View Article : Google Scholar : PubMed/NCBI
|
64
|
Jung IH, Choi JH, Chung YY, Lim GL, Park
YN and Park SW: Predominant activation of JAK/STAT3 pathway by
interleukin-6 is implicated in hepatocarcinogenesis. Neoplasia.
17:586–597. 2015. View Article : Google Scholar : PubMed/NCBI
|