1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bulk S, Berkhof J, Bulkmans NWJ, Zielinski
GD, Rozendaal L, Van Kemenade FJ, Snijders PJF and Meijer CJLM:
Preferential risk of HPV16 for squamous cell carcinoma and of HPV18
for adenocarcinoma of the cervix compared to women with normal
cytology in The Netherlands. Br J Cancer. 94:171–175. 2006.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Serrano B, de Sanjosé S, Tous S, Quiros B,
Muñoz N, Bosch X and Alemany L: Human papillomavirus genotype
attribution for HPVs 6, 11, 16, 18, 31, 33, 45, 52 and 58 in female
anogenital lesions. Eur J Cancer. 51:1732–1741. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jiménez-Wences H, Peralta-Zaragoza O and
Fernández-Tilapa G: Human papillomavirus, DNA methylation and
microRNA expression in cervical cancer (Review). Oncol Rep.
31:2467–2476. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nayar R and Wilbur DC: The Bethesda system
for reporting cervical cytology. Definitions, criteria, and
explanatory notes. Springer International Publishing. (3rd).
(Switzerland). 2015.
|
6
|
Ferber MJ, Thorland EC, Brink AA, Rapp AK,
Phillips LA, McGovern R, Gostout BS, Cheung TH, Chung TKH, Fu WY
and Smith DI: Preferential integration of human papillomavirus type
18 near the c-myc locus in cervical carcinoma. Oncogene.
22:7233–7242. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schmitz M, Driesch C, Jansen L, Runnebaum
IB and Dürst M: Non-random integration of the HPV genome in
cervical cancer. PLoS One. 7:e396322012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Medina PP and Slack FJ: MicroRNAs and
cancer: An overview. Cell Cycle. 7:2485–2492. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zubillaga-Guerrero MI, Alarcón-Romero LC,
Illades-Aguiar B, Flores-Alfaro E, Bermúdez-Morales VH, Deas J and
Peralta-Zaragoza O: MicroRNA miR-16-1 regulates CCNE1 (cyclin E1)
gene expression in human cervical cancer cells. Int J Clin Exp Med.
8:15999–16006. 2015.PubMed/NCBI
|
10
|
Park S, Eom K, Kim J, Bang H, Wang HY, Ahn
S, Kim G, Jang H, Kim S, Lee D, et al: MiR-9, miR-21, and miR-155
as potential biomarkers for HPV positive and negative cervical
cancer. BMC Cancer. 17:6582017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lv KT, Liu Z, Feng J, Zhao W, Hao T, Ding
WY, Chu JP and Gao LJ: miR-22-3p regulates cell proliferation and
inhibits cell apoptosis through targeting the eIF4EBP3 gene in
human cervical cancer squamous carcinoma cells. Int J Med Sci.
15:142–152. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li C, Zheng X, Li W, Bai F, Lyu J and Meng
QH: Serum miR-486-5p as a diagnostic marker in cervical cancer:
With investigation of potential mechanisms. BMC Cancer. 18:612018.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Li Z, Peng Z, Gu S, Zheng J, Feng D, Qin Q
and He J: Global analysis of miRNA-mRNA interaction network in
breast cancer with brain metastasis. Anticancer Res. 37:4455–4468.
2017.PubMed/NCBI
|
14
|
Mourad L, El-Ahwany E, Zoheiry M,
Abu-Taleb H, Hassan M, Ouf A, Rahim AA, Hassanien M and Zada S:
Expression analysis of liver-specific circulating microRNAs in
HCV-induced hepatocellular carcinoma in Egyptian patients. Cancer
Biol Ther. 19:400–406. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lui WO, Pourmand N, Patterson BK and Fire
A: Patterns of known and novel small RNAs in human cervical cancer.
Cancer Res. 67:6031–6043. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ,
Hwang SY, Kim WY, Kim TJ, Lee JH, Kim BG, et al: Altered microRNA
expression in cervical carcinomas. Clin Cancer Res. 14:2535–2542.
2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang X, Tang S, Le SY, Lu R, Rader JS,
Meyers C and Zheng ZM: Aberrant expression of oncogenic and tumor
suppressive microRNAs in cervical cancer is required for cancer
cell growth. PLoS One. 3:e25572008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pereira PM, Marques JP, Soares AR, Carreto
L and Santos MAS: microRNA expression variability in human cervical
tissues. PLoS One. 5:e117802010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wilting SM, Snijders PJ, Verlaat W,
Jaspers A, van de Wiel MA, van Wieringen WN, Meijer GA, Kenter GG,
Yi Y, le Sage C, et al: Altered microRNA expression associated with
chromosomal changes contributes to cervical carcinogenesis.
Oncogene. 32:106–116. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang X, Wang HK, Li Y, Hafner M, Banerjee
NS, Tang S, Briskin D, Meyers C, Chow LT, Xie X, et al: microRNAs
are biomarkers of oncogenic human papillomavirus infections. Proc
Natl Acad Sci USA. 111:4262–4267. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Calin GA, Cimmino A, Fabbri M, Ferracin M,
Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzón R, Aqeilan RI,
et al: miR-15a and miR-16-1 cluster functions in human leukemia.
Proc Natl Acad Sci USA. 105:5166–5171. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zheng ZM and Wang X: Regulation of
cellular miRNA expression by human papillomaviruses. Biochim
Biophys Acta. 1809:668–677. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Linsley PS, Schelter J, Burchard J,
Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond
CK, Dai H, et al: Transcripts targeted by the microRNA-16 family
cooperatively regulate cell cycle progression. Mol Cell Biol.
27:2240–2252. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Williams JR: The declaration of Helsinki
and public health. Bull World Health Organ. 86:650–652. 2008.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Benedet JL, Bender H, Jones H III, Ngan HY
and Pecorelli S: FIGO staging classifications and clinical practice
guidelines in the management of gynecologic cancers. FIGO Committee
on Gynecologic Oncology. Int J Gynaecol Obstet. 70:209–262. 2000.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Leonard DG, Michael KW and James BF:
Basics methods in Molecular Biology. McGraw-Hill Professional
(2nd). Appleton and Lange. (Norwalk, CT, USA). 1994.
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Wong L, Lee K, Russell I and Chen C:
Endogenous controls for real-time quantitation of miRNA Using
TaqMan® MicroRNA Assays. Application note
TaqMan® MicroRNA Assays. Applied Biosystems. 2007.
|
29
|
Palacio-Mejía LS, Lazcano-Ponce E,
Allen-Leigh B and Hernández-Avila M: Regional differences in breast
and cervical cancer mortality in Mexico between 1979–2006. Salud
Publica Mex. 51 (Suppl 2):S208–S219. 2009.(In Spanish). View Article : Google Scholar : PubMed/NCBI
|
30
|
Secretaría de Salud: Información
estadística. Estadísticas de cáncer cervicouterino. 22–03.
2020
|
31
|
Illades-Aguiar B, Alarcón-Romero Ldel C,
Antonio-Véjar V, Zamudio-López N, Sales-Linares N, Flores-Alfaro E,
Fernández-Tilapa G, Vénces-Velázquez A, Muñoz-Valle JF and
Leyva-Vázquez MA: Prevalence and distribution of human
papillomavirus types in cervical cancer, squamous intraepithelial
lesions, and with no intraepithelial lesions in women from Southern
Mexico. Gynecol Oncol. 117:291–296. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ortiz-Ortiz J, Alarcón-Romero Ldel C,
Jiménez-López MA, Garzón-Barrientos VH, Calleja-Macías I,
Barrera-Saldaña HA, Leyva-Vázquez MA and Illades-Aguiar B:
Association of human papillomavirus 16 E6 variants with cervical
carcinoma and precursor lesions in women from Southern Mexico.
Virol J. 12:292015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shen Y, Gong JM, Li YQ, Gong YM, Lei DM,
Cheng GM and Li XF: Epidemiology and genotype distribution of human
papillomavirus (HPV) in women of Henan Province, China. Clin Chim
Acta. 415:297–301. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lacobone AD, Bottari F, Radice D, Preti
EP, Franchi D, Vidal-Urbinati AM, Boveri S, Passerini R and Sandri
MT: Distribution of high-risk human papillomavirus genotypes and
multiple infections in preneoplastic and neoplastic cervical
lesions of unvaccinated women: A cross-sectional study. J Low Genit
Tract Dis. 23:259–264. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li M, Du X, Lu M, Zhang W, Sun Z, Li L, Ye
M, Fan W, Jiang S, Liu A, et al: Prevalence characteristics of
single and multiple HPV infections in women with cervical cancer
and precancerous lesions in Beijing, China. J Med Virol.
91:473–481. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chaturvedi AK, Katki HA, Hildesheim A,
Rodríguez AC, Quint W, Schiffman M, Van Doorn LJ, Porras C,
Wacholder S, González P, et al: Human papillomavirus infection with
multiple types: Pattern of coinfection and risk of cervical
disease. J Infect Dis. 203:910–920. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Vinokurova S, Wentzensen N, Kraus I, Klaes
R, Driesch C, Melsheimer P, Kisseljov F, Dürst M, Schneider A and
von Knebel Doeberitz M: Type dependent integration frequency of
human papillomavirus genomes in cervical lesions. Cancer Res.
68:307–313. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Evans MF, Mount SL, Beatty BG, Cooper K
and Phil D: Biotinyl-tyramide-based in situ hybridization signal
patterns distinguish human papillomavirus type and grade of
cervical intraepithelial neoplasia. Mod Pathol. 15:1339–1347. 2002.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Vega-Peña A, Illades-Aguiar B,
Flores-Alfaro E, López-Bayghen E, Leyva-Vázquez MA,
Castañeda-Saucedo E and Alarcón-Romero LC: Risk of progression of
early cervical lesions is associated with integration and
persistence of HPV-16 and expression of E6, Ki-67, and telomerase.
J Cytol. 30:226–232. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tagle DK, Sotelo DH, Illades-Aguiar B,
Leyva-Vazquez MA, Alfaro EF, Coronel YC, Hernández Odel M and
Romero Ldel C: Expression of E6, p53 and p21 proteins and physical
state of HPV16 in cervical cytologies with and without low grade
lesions. Int J Clin Exp Med. 7:186–193. 2014.PubMed/NCBI
|
41
|
Torres-Rojas FI, Alarcón-Romero LCD,
Leyva-Vázquez MA, Ortiz-Ortiz J, Mendoza-Catalán MA,
Hernández-Sotelo D, Del Moral-Hernández O, Rodríguez-Ruiz HA,
Leyva-Illades D, Flores-Alfaro E and Illades-Aguiar B: Methylation
of the L1 gene and integration of human papillomavirus 16 and 18 in
cervical carcinoma and premalignant lesions. Oncol Lett.
15:2278–2286. 2018.PubMed/NCBI
|
42
|
Zubillaga-Guerrero MI, Illades-Aguiar B,
Leyva-Vazquez MA, Flores-Alfaro E, Castañeda-Saucedo E, Muñoz-Valle
JF and Alarcón-Romero LC: The integration of HR-HPV increases e
expression of cyclins A and E in cytologies with and without
low-grade lesions. J Cytol. 30:1–7. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Cricca M, Venturoli S, Leo E, Costa S,
Musiani M and Zerbini M: Molecular analysis of HPV 16 E6I/E6II
spliced mRNAs and correlation with the viral physical state and the
grade of the cervical lesion. J Med Virol. 81:1276–1282. 2009.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Saunier M, Monnier-Benoit S, Mauny F,
Dalstein V, Briolat J, Riethmuller D, Kantelip B, Schwarz E, Mougin
C and Prétet JL: Analysis of human papillomavirus type 16 (HPV16)
DNA load and physical state for identification of HPV16-infected
women with high-grade lesions or cervical carcinoma. J Clin
Microbiol. 46:3678–3685. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ibragimova M, Tsyganov M, Shpileva O,
Churuksaeva O, Bychkov V, Kolomiets L and Litviakov N: HPV status
and its genomic integration affect survival of patients with
cervical cancer. Neoplasma. 65:441–448. 2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kim J, Kim K, Jeon DS, Lee CH, Roh JW, Kim
Y and Park SY: Type-specific viral load and physical state of HPV
type 16, 18, and 58 as diagnostic biomarkers for high-grade
squamous intraepitelial lesions or cervical cancer. Cancer Res
Treat. 52:396–405. 2020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gallo G, Bibbo M, Bagella L, Zamparelli A,
Sanseverino F, Giovagnoli MR, Vecchione A and Giordano A: Study of
viral integration of HPV-16 in young patients with LSIL. J Clin
Pathol. 56:532–536. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kulmala SMA, Syrjänen SM, Gyllensten UB,
Shabalova IP, Petrovichev N, Tosi P, Syrjänen KJ and Johansson BC:
Early integration of high copy HPV16 detectable in women with
normal and low grade cervical cytology and histology. J Clin
Pathol. 59:513–517. 2006. View Article : Google Scholar : PubMed/NCBI
|
49
|
Peitsaro P, Johansson B and Syrjänen S:
Integrated human papillomavirus type 16 is frequently found in
cervical cancer precursors as demonstrated by a novel quantitative
real-time PCR technique. J Clin Microbiol. 40:886–891. 2002.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Chaiwongkot A, Vinokurova S, Pientong C,
Ekalaksananan T, Kongyingyoes B, Kleebkaow P, Chumworathayi B,
Patarapadungkit N, Reuschenbach M and von Knebel Doeberitz M:
Differential methylation of E2 binding sites in episomal and
integrated HPV 16 genomes in preinvasive and invasive cervical
lesions. Int J Cancer. 132:2087–2094. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Schickel R, Boyerinas B, Park SM and Peter
ME: MicroRNAs: Key players in e immune system, differentiation,
tumorigenesis and cell death. Oncogene. 27:5959–5974. 2008.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Bueno MJ and Malumbres M: MicroRNAs and
the cell cycle. Biochim Biophys Acta. 1812:592–601. 2011.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Ofir M, Hacohen D and Ginsberg D: MiR-15
and miR-16 are direct transcriptional targets of E2F1 at limit
E2F-induced proliferation by targeting cyclin E. Mol Cancer Res.
9:440–447. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Gonzalez SL, Stremlau M, Basile JR and
Münger K: Degradation of the retinoblastoma tumor suppressor by the
human papillomavirus type 16 E7 oncoprotein is important for
functional inactivation and is separable from proteasomal
degradation of E7. J Virol. 75:7583–7591. 2001. View Article : Google Scholar : PubMed/NCBI
|
55
|
Nguyen CL and Münger K: Direct association
of the HPV16 E7 oncoprotein with cyclin A/CDK2 and cyclin E/CDK2
complexes. Virology. 380:21–25. 2008. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ohtani K, DeGregori J and Nevins JR:
Regulation of the cyclin E gene by transcription factor E2F1. Proc
Natl Acad Sci USA. 92:12146–12150. 1995. View Article : Google Scholar : PubMed/NCBI
|
57
|
Wang F, Fu XD, Zhou Y and Zhang Y:
Down-regulation of the cyclin E1 oncogene expression by
microRNA-16-1 induces cell cycle arrest in human cancer cells. BMB
Rep. 42:725–730. 2009. View Article : Google Scholar : PubMed/NCBI
|
58
|
Pett M and Coleman N: Integration of
high-risk human papillomavirus: A key event in cervical
carcinogenesis? J Pathol. 212:356–367. 2007. View Article : Google Scholar : PubMed/NCBI
|
59
|
Kalantari M, Blennow E, Hagmar B and
Johansson B: Physical state of HPV16 and chromosomal mapping of the
integrated form in cervical carcinomas. Diagn Mol Pathol. 10:46–54.
2001. View Article : Google Scholar : PubMed/NCBI
|
60
|
Thorland EC, Myers SL, Gostout BS and
Smith DI: Common fragile sites are preferential targets for HPV16
integrations in cervical tumors. Oncogene. 22:1225–1237. 2003.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Calin GA, Dumitru CD, Shimizu M, Bichi R,
Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al:
Frequent deletions and down-regulation of micro-RNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci
USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
62
|
Popescu NC, DiPaolo JA and Amsbaugh SC:
Integration sites of human papillomavirus 18 DNA sequences on HeLa
cell chromosomes. Cytogenet Cell Genet. 44:58–62. 1987. View Article : Google Scholar : PubMed/NCBI
|
63
|
Chang TC, Yu D, Lee YS, Wentzel EA, Arking
DE, West KM, Dang CV, Thomas-Tikhonenko A and Mendell JT:
Widespread microRNA repression by Myc contributes to tumorigenesis.
Nat Genet. 40:43–50. 2008. View Article : Google Scholar : PubMed/NCBI
|
64
|
Lerner M, Harada M, Loven J, Castro J,
Davis Z, Oscier D, Henriksson M, Sangfelt O, Grander D and Corcoran
MM: DLEU2, frequently deleted in malignancy, functions as a
critical host gene of the cell cycle inhibitory microRNAs miR-15a
and miR-16-1. Exp Cell Res. 315:2941–2952. 2009. View Article : Google Scholar : PubMed/NCBI
|