1
|
De Vita F, Di Martino N, Fabozzi A,
Laterza MM, Ventriglia J, Savastano B, Petrillo A, Gambardella V,
Sforza V, Marano L, et al: Clinical management of advanced gastric
cancer: The role of new molecular drugs. World J Gastroentero.
20:14537–14558. 2014. View Article : Google Scholar
|
2
|
Mori M, Sugimachi K, Ohiwa T, Okamura T,
Tamura S and Inokuchi K: Early gastric carcinoma in Japanese
patients under 30 years of age. Br J Surg. 72:289–291. 1985.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Lim S, Lee HS, Kim HS, Kim YI and Kim WH:
Alteration of E-cadherin-mediated adhesion protein is common, but
microsatellite instability is uncommon in young age gastric
cancers. Histopathology. 42:128–136. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Smith BR and Stabile BE: Extreme
aggressiveness and lethality of gastric adenocarcinoma in the very
young. Arch Surg. 144:506–510. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Quijano Orvananos F, Moreno Paquentin E,
Alvarez JJ, Martinez Munive A and Butron Perez L: Gastric carcinoma
in patients under 35 years. Rev Gastroenterol Mex. 64:75–77.
1999.(In Spanish). PubMed/NCBI
|
6
|
Theuer CP, Kurosaki T, Taylor TH and
Anton-Culver H: Unique features of gastric carcinoma in the young:
A population-based analysis. Cancer. 83:25–33. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wierinckx A, Roche M, Raverot G,
Legras-Lachuer C, Croze S, Nazaret N, Rey C, Auger C, Jouanneau E,
Chanson P, et al: Integrated genomic profiling identifies loss of
chromosome 11p impacting transcriptomic activity in aggressive
pituitary PRL Tumors. Brain Pathol. 21:533–543. 2011.PubMed/NCBI
|
8
|
Cancer Genome Atlas Research Network, .
Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard
B, Hinoue T, Laird PW, Curtis C, et al: Comprehensive molecular
characterization of gastric adenocarcinoma. Nature. 513:202–209.
2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chmielecki J and Meyerson M: DNA
sequencing of cancer: What Have We Learned? Annu Rev Med. 65:63–79.
2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Garraway LA and Lander ES: Lessons from
the Cancer Genome. Cell. 153:17–37. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Vogelstein B, Papadopoulos N, Velculescu
VE, Zhou SB, Diaz LA and Kinzler KW: Cancer genome landscapes.
Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Garraway LA: Genomics-driven oncology:
Framework for an emerging paradigm. J Clin Oncol. 31:1806–1814.
2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen R: Abstract 4495: Development and
clinical application of an integrative genomic approach to
personalized cancer therapy. Cancer Res. 762016.doi:
10.1158/1538-7445.AM2016-4495.
|
14
|
Edge SB and Compton CC: The American Joint
Committee on Cancer: The 7th edition of the AJCC cancer staging
manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Krueger F: Trim Galore: A wrapper tool
around Cutadapt and FastQC to consistently apply quality and
adapter trimming to FastQ files, with some extra functionality for
MspI-digested RRBS-type (Reduced Representation Bisufite-Seq)
libraries. 2012.
|
16
|
Dobin A, Davis CA, Schlesinger F, Drenkow
J, Zaleski C, Jha S, Batut P, Chaisson M and Gingeras TR: STAR:
Ultrafast universal RNA-seq aligner. Bioinformatics. 29:15–21.
2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Anders S, Pyl PT and Huber W: HTSeq-a
Python framework to work with high-throughput sequencing data.
Bioinformatics. 31:166–169. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Robinson MD, McCarthy DJ and Smyth GK:
edgeR: A Bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Li H: Aligning sequence reads, clone
sequences and assembly contigs with BWA-MEM. (Submitted on 16 Mar
2013 (v1), last revised 26 May, 2013 (this version, v2)).
|
20
|
DePristo MA, Banks E, Poplin R, Garimella
KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, et
al: A framework for variation discovery and genotyping using
next-generation DNA sequencing data. Nat Genet. 43:491–498. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Poplin R, Ruano-Rubio V, DePristo MA,
Fennell TJ, Carneiro MO, Van der Auwera GA, Kling DE, Gauthier LD,
Levy-Moonshine A, Roazen D, et al: Scaling accurate genetic variant
discovery to tens of thousands of samples. BioRxiv. July
24–2017.doi: https://doi.org/10.1101/201178.
|
22
|
Cibulskis K, Lawrence MS, Carter SL,
Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES
and Getz G: Sensitive detection of somatic point mutations in
impure and heterogeneous cancer samples. Nat Biotechnol.
31:213–219. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Colaprico A, Silva TC, Olsen C, Garofano
L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM,
Castiglioni I, et al: TCGAbiolinks: An R/Bioconductor package for
integrative analysis of TCGA data. Nucleic Acids Res. 44:e712016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
1000 Genomes Project Consortium, . Auton
A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini
JL, McCarthy S, McVean GA and Abecasis GR: A global reference for
human genetic variation. Nature. 526:68–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Karczewski KJ, Weisburd B, Thomas B,
Solomonson M, Ruderfer DM, Kavanagh D, Hamamsy T, Lek M, Samocha
KE, Cummings BB, et al: The ExAC browser: Displaying reference data
information from over 60 000 exomes. Nucleic Acids Res.
45:D840–D845. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Karczewski KJ and Karczewski LF: The
genome aggregation database (gnomAD). 2017.
|
27
|
Liu X, Wu C, Li C and Boerwinkle E: dbNSFP
v3.0: A One-stop database of functional predictions and annotations
for human nonsynonymous and splice-site SNVs. Hum Mutat.
37:235–241. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sherry ST, Ward MH, Kholodov M, Baker J,
Phan L, Smigielski EM and Sirotkin K: dbSNP: The NCBI database of
genetic variation. Nucleic Acids Res. 29:308–311. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tate JG, Bamford S, Jubb HC, Sondka Z,
Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E,
et al: COSMIC: The catalogue of somatic mutations in cancer.
Nucleic Acids Res. 47:D941–D947. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kimura M: A simple method for estimating
evolutionary rates of base substitutions through comparative
studies of nucleotide-sequences. J Mol Evol. 16:111–120. 1980.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Mwenifumbo JC and Marra MA: Cancer
genome-sequencing study design. Nat Rev Genet. 14:321–332. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Shen R and Seshan VE: FACETS:
Allele-specific copy number and clonal heterogeneity analysis tool
for high-throughput DNA sequencing. Nucleic Acids Res. 44:e1312016.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Team RC: R: A language and environment for
statistical computing. 2013.
|
34
|
Rausch T, Zichner T, Schlattl A, Stutz AM,
Benes V and Korbel JO: DELLY: Structural variant discovery by
integrated paired-end and split-read analysis. Bioinformatics.
28:i333–i339. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Dong C, Wei P, Jian X, Gibbs R, Boerwinkle
E, Wang K and Liu X: Comparison and integration of deleteriousness
prediction methods for nonsynonymous SNVs in whole exome sequencing
studies. Hum Mol Genet. 24:2125–2137. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Futreal PA, Coin L, Marshall M, Down T,
Hubbard T, Wooster R, Rahman N and Stratton MR: A census of human
cancer genes. Nat Rev Cancer. 4:177–183. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Rahman N: Realizing the promise of cancer
predisposition genes. Nature. 505:302–308. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yu GC, Wang LG, Han YY and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bailey MH, Tokheim C, Porta-Pardo E,
Sengupta S, Bertrand D, Weerasinghe A, Colaprico A, Wendl MC, Kim
J, Reardon B, et al: Comprehensive characterization of cancer
driver genes and mutations. Cell. 174:1034–1035. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Szász AM, Lánczky A, Nagy Á, Förster S,
Hark K, Green JE, Boussioutas A, Busuttil R, Szabó A and Győrffy B:
Cross-validation of survival associated biomarkers in gastric
cancer using transcriptomic data of 1,065 patients. Oncotarget.
7:49322–49333. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Taiaroa G, Rawlinson D, Featherstone L, et
al: Direct RNA sequencing and early evolution of SARS-CoV-2.
bioRxiv. 2020.(Epub ahead of print).
|
45
|
He ML, Chen Y, Chen Q, He Y, Zhao J, Wang
J, Yang H and Kung HF: Multiple gene dysfunctions lead to high
cancer-susceptibility: Evidences from a whole-exome sequencing
study. Am J Cancer Res. 1:562–573. 2011.PubMed/NCBI
|
46
|
Zucchelli M, Torkvist L, Bresso F,
Halfvarson J, Hellquist A, Anedda F, Assadi G, Lindgren GB,
Svanfeldt M, Janson M, et al: PepT1 oligopeptide transporter
(SLC15A1) gene polymorphism in inflammatory bowel disease. Inflamm
Bowel Dis. 15:1562–1569. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Hodgson A, Parra-Herran C and Mirkovic J:
Immunohistochemical expression of HIK1083 and MUC6 in endometrial
carcinomas. Histopathology. 75:552–558. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Li M, Huang L, Qiu H, Fu Q, Li W, Yu Q,
Sun L, Zhang L, Hu G, Hu J and Yuan X: Helicobacter pylori
infection synergizes with three inflammation-related genetic
variants in the GWASs to increase risk of gastric cancer in a
Chinese population. PLoS One. 8:e749762013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Hierro C, Alsina M, Sanchez M, Serra V,
Rodon J and Tabernero J: Targeting the fibroblast growth factor
receptor 2 in gastric cancer: Promise or pitfall? Ann Oncol.
28:1207–1216. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Cruciat CM and Niehrs C: Secreted and
transmembrane wnt inhibitors and activators. Cold Spring Harb
Perspect Biol. 5:a0150812013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Herr P, Hausmann G and Basler K: WNT
secretion and signalling in human disease. Trends Mol Med.
18:483–493. 2012. View Article : Google Scholar : PubMed/NCBI
|