Mutational analysis of extranodal marginal zone lymphoma using next generation sequencing
- Authors:
- Seok Jae Huh
- Sung Yong Oh
- Suee Lee
- Ji Hyun Lee
- Sung Hyun Kim
- Min Kyung Pak
- Hyo-Jin Kim
-
Affiliations: Department of Internal Medicine, Dong‑A University College of Medicine, Seo‑gu, Busan 49201, Republic of Korea, Department of Pathology, Dong‑A University College of Medicine, Seo‑gu, Busan 49201, Republic of Korea - Published online on: September 8, 2020 https://doi.org/10.3892/ol.2020.12068
- Article Number: 205
-
Copyright: © Huh et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kahl B and Yang D: Marginal zone lymphomas: Management of nodal, splenic, and MALT NHL. Hematology Am Soc Hematol Educ Program. 359–364. 2008. View Article : Google Scholar : PubMed/NCBI | |
Thieblemont C, Berger F, Dumontet C, Moullet I, Bouafia F, Felman P, Salles G and Coiffier B: Mucosa-associated lymphoid tissue lymphoma is a disseminated disease in one third of 158 patients analyzed. Blood. 95:802–806. 2000. View Article : Google Scholar : PubMed/NCBI | |
Armitage JO: A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkins lymphoma. Blood. 89:3909–3918. 1997. View Article : Google Scholar : PubMed/NCBI | |
Chan JK, Banks PM, Cleary ML, Delsol G, De Wolf-Peeters C, Falini B, Gatter KC, Grogan TM, Harris NL, Isaacson PG, et al: A revised European-American classification of lymphoid neoplasms proposed by the International Lymphoma Study Group. A summary version. Am J Clin Pathol. 103:543–560. 1995. View Article : Google Scholar : PubMed/NCBI | |
Isaacson PG and Du MQ: MALT lymphoma: From morphology to molecules. Nat Rev Cancer. 4:644–653. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ferreri AJ, Govi S and Ponzoni M: Marginal zone lymphomas and infectious agents. Semin Cancer Biol. 23:431–440. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thieblemont C, Bertoni F, Copie-Bergman C, Ferreri AJ and Ponzoni M: Chronic inflammation and extra-nodal marginal-zone lymphomas of MALT-type. Semin Cancer Biol. 24:33–42. 2014. View Article : Google Scholar : PubMed/NCBI | |
Witkowska M and Smolewski P: Helicobacter pylori infection, chronic inflammation, and genomic transformations in gastric MALT lymphoma. Mediators Inflamm. 2013:5231702013. View Article : Google Scholar : PubMed/NCBI | |
Kwee I, Rancoita PM, Rinaldi A, Ferreri AJ, Bhagat G, Gascoyne RD, Canzonieri V, Gaidano G, Doglioni C, Zucca E, et al: Genomic profiles of MALT lymphomas: Variability across anatomical sites. Haematologica. 96:1064–1066. 2011. View Article : Google Scholar : PubMed/NCBI | |
Goda JS, Gospodarowicz M, Pintilie M, Wells W, Hodgson DC, Sun A, Crump M and Tsang RW: Long-term outcome in localized extranodal mucosa-associated lymphoid tissue lymphomas treated with radiotherapy. Cancer. 116:3815–3824. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zucca E, Conconi A, Pedrinis E, Cortelazzo S, Motta T, Gospodarowicz MK, Patterson BJ, Ferreri AJ, Ponzoni M, Devizzi L, et al: Nongastric marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue. Blood. 101:2489–2495. 2003. View Article : Google Scholar : PubMed/NCBI | |
Du MQ: MALT lymphoma: Genetic abnormalities, immunological stimulation and molecular mechanism. Best Pract Res Clin Haematol. 30:13–23. 2017. View Article : Google Scholar : PubMed/NCBI | |
Du MQ: MALT lymphoma: A paradigm of NF-κB dysregulation. Semin Cancer Biol. 39:49–60. 2016. View Article : Google Scholar : PubMed/NCBI | |
Farinha P and Gascoyne RD: Molecular pathogenesis of mucosa-associated lymphoid tissue lymphoma. J Clin Oncol. 23:6370–6378. 2005. View Article : Google Scholar : PubMed/NCBI | |
Morgan JA, Yin Y, Borowsky AD, Kuo F, Nourmand N, Koontz JI, Reynolds C, Soreng L, Griffin CA, Graeme-Cook F, et al: Breakpoints of the t(11; 18)(q21; q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res. 59:6205–6213. 1999.PubMed/NCBI | |
Akagi T, Motegi M, Tamura A, Suzuki R, Hosokawa Y, Suzuki H, Ota H, Nakamura S, Morishima Y, Taniwaki M and Seto M: A novel gene, MALT1 at 18q21, is involved in t (11; 18)(q21; q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene. 18:5758–5794. 1999. View Article : Google Scholar | |
Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, De Wolf-Peeters C, Hagemeijer A, Van den Berghe H and Marynen P: The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t (11; 18)(q21; q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 93:3601–3609. 1999. View Article : Google Scholar : PubMed/NCBI | |
Auer I, Gascoyne R, Conners J, Cotter FE, Greiner TC, Sanger WG and Horsman DE: t (11; 18)(q21; q21) is the most common translocation in MALT lymphomas. Ann Oncol. 8:979–985. 1997. View Article : Google Scholar : PubMed/NCBI | |
Streubel B, Lamprecht A, Dierlamm J, Cerroni L, Stolte M, Ott G, Raderer M and Chott A: T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood. 101:2335–2339. 2003. View Article : Google Scholar : PubMed/NCBI | |
Streubel B, Vinatzer U, Lamprecht A, Raderer M and Chott A: T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia. 19:652–658. 2005. View Article : Google Scholar : PubMed/NCBI | |
Streubel B, Simonitsch-Klupp I, Müllauer L, Lamprecht A, Huber D, Siebert R, Stolte M, Trautinger F, Lukas J, Püspök A, et al: Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia. 18:1722–1726. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chanudet E, Ye H, Ferry J, Bacon CM, Adam P, Müller-Hermelink HK, Radford J, Pileri SA, Ichimura K, Collins VP, et al: A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands. J Pathol. 217:420–430. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chanudet E, Huang Y, Ichimura K, Dong G, Hamoudi RA, Radford J, Wotherspoon AC, Isaacson PG, Ferry J and Du MQ: A20 is targeted by promoter methylation, deletion and inactivating mutation in MALT lymphoma. Leukemia. 24:483–487. 2010. View Article : Google Scholar : PubMed/NCBI | |
Honma K, Tsuzuki S, Nakagawa M, Karnan S, Aizawa Y, Kim WS, Kim YD, Ko YH and Seto M: TNFAIP3 is the target gene of chromosome band 6q23. 3-q24. 1 loss in ocular adnexal marginal zone B cell lymphoma. Genes Chromosomes Cancer. 47:1–7. 2008. View Article : Google Scholar : PubMed/NCBI | |
Novak U, Rinaldi A, Kwee I, Nandula SV, Rancoita PM, Compagno M, Cerri M, Rossi D, Murty VV, Zucca E, et al: The NF-{kappa}B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood. 113:4918–4921. 2009. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Lopez A, Curiel-Olmo S, Mollejo M, Cereceda L, Martinez N, Montes-Moreno S, Almaraz C, Revert JB and Piris MA: MYD88 (L265P) somatic mutation in marginal zone B-cell lymphoma. Am J Surg Pathol. 39:644–651. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, et al: Oncogenically active MYD88 mutations in human lymphoma. Nature. 470:115–119. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li ZM, Rinaldi A, Cavalli A, Mensah AA, Ponzoni M, Gascoyne RD, Bhagat G, Zucca E and Bertoni F: MYD88 somatic mutations in MALT lymphomas. Br J Haematol. 158:662–664. 2012. View Article : Google Scholar : PubMed/NCBI | |
Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, et al: MYD88 L265P somatic mutation in Waldenströms macroglobulinemia. N Engl J Med. 367:826–833. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X, Morra E, Trojani A, Greco A, Arcaini L, et al: MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood. 121:2051–2058. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oh SY, Kwon HC, Kim WS, Park YH, Kim K, Kim HJ, Kwon JM, Lee J, Ko YH, Ahn YC, et al: Nongastric marginal zone B-cell lymphoma: A prognostic model from a retrospective multicenter study. Cancer Lett. 258:90–97. 2007. View Article : Google Scholar : PubMed/NCBI | |
Olszewski AJ and Castillo JJ: Survival of patients with marginal zone lymphoma. Cancer. 119:629–638. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cogliatti SB, Schmid U, Schumacher U, Eckert F, Hansmann ML, Hedderich J, Takahashi H and Lennert K: Primary B-cell gastric lymphoma: A clinicopathological study of 145 patients. Gastroenterology. 101:1159–1170. 1991. View Article : Google Scholar : PubMed/NCBI | |
Fischbach W: Gastric MALT lymphoma-update on diagnosis and treatment. Best Pract Res Clin Gastroenterol. 28:1069–1077. 2014. View Article : Google Scholar : PubMed/NCBI | |
Alderuccio JP, Zhao W, Desai A, Ramdial J, Gallastegui N, Kimble E, de la Fuente MI, Husnain M, Rosenblatt JD, Alencar AJ, et al: Short survival and frequent transformation in extranodal marginal zone lymphoma with multiple mucosal sites presentation. Am J Hematol. 94:585–596. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister TA; Alliance Australasian Leukaemia and Lymphoma Group and Eastern Cooperative Oncology Group; European Mantle Cell Lymphoma Consortium; Italian Lymphoma Foundation, ; et al: Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J Clin Oncol. 32:3059–3068. 2014. View Article : Google Scholar : PubMed/NCBI | |
International Non-Hodgkins Lymphoma Prognostic Factors Project, . A predictive model for aggressive non-Hodgkins lymphoma. N Engl J Med. 329:987–994. 1993. View Article : Google Scholar : PubMed/NCBI | |
Shin HT, Choi YL, Yun JW, Kim NKD, Kim SY, Jeon HJ, Nam JY, Lee C, Ryu D, Kim SC, et al: Prevalence and detection of low-allele-fraction variants in clinical cancer samples. Nat Commun. 8:13772017. View Article : Google Scholar : PubMed/NCBI | |
Illumina, . Sample Multiplexing Overview. https://www.illumina.com/techniques/sequencing/ngs-library-prep/multiplexing.htmlAugust 26–2020 | |
Locallo A, Prandi D, Fedrizzi T and Demichelis F: TPES: Tumor purity estimation from SNVs. Bioinformatics. 35:4433–4435. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oh BY, Shin HT, Yun JW, Kim KT, Kim J, Bae JS, Cho YB, Lee WY, Yun SH, Park YA, et al: Intratumor heterogeneity inferred from targeted deep sequencing as a prognostic indicator. Sci Rep. 9:45422019. View Article : Google Scholar : PubMed/NCBI | |
Coward J and Harding A: Size does matter: Why polyploid tumor cells are critical drug targets in the war on cancer. Front Oncol. 4:1232014. View Article : Google Scholar : PubMed/NCBI | |
Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, Ji HP and Maley CC: Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat Med. 22:105–113. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES and Getz G: Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 31:213–219. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wilm A, Aw PP, Bertrand D, Yeo GH, Ong SH, Wong CH, Khor CC, Petric R, Hibberd ML and Nagarajan N: LoFreq: A sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 40:11189–11201. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ye H, Gong L, Liu H, Hamoudi RA, Shirali S, Ho L, Chott A, Streubel B, Siebert R, Gesk S, et al: MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. J Pathol. 205:293–301. 2005. View Article : Google Scholar : PubMed/NCBI | |
Oetting WS, Brookes AJ, Béroud C and Taschner PE: Clinical interpretation of variants from next-generation sequencing: The 2016 scientific meeting of the human genome variation society. Hum Mutat. 37:1110–1113. 2016. View Article : Google Scholar : PubMed/NCBI | |
Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, et al: Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 42:181–185. 2010. View Article : Google Scholar : PubMed/NCBI | |
Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, Escaramis G, Jares P, Beà S, González-Díaz M, Bassaganyas L, et al: Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 475:101–105. 2011. View Article : Google Scholar : PubMed/NCBI | |
Spina V, Khiabanian H, Messina M, Monti S, Cascione L, Bruscaggin A, Spaccarotella E, Holmes AB, Arcaini L, Lucioni M, et al: The genetics of nodal marginal zone lymphoma. Blood. 128:1392–1373. 2016. View Article : Google Scholar | |
Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, Huebner-Chan DR, Bailey NG, Yang DT, Bhagat G, et al: Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 209:1553–1565. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, Gunawardana J, Jenkins C, Cochrane C, Ben-Neriah S, et al: Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood. 119:1963–1971. 2012. View Article : Google Scholar : PubMed/NCBI | |
Feldman AL, Dogan A, Smith DI, Law ME, Ansell SM, Johnson SH, Porcher JC, Ozsan N, Wieben ED, Eckloff BW and Vasmatzis G: Discovery of recurrent t (6; 7)(p25. 3; q32. 3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 117:915–919. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hyeon J, Lee B, Shin SH, Yoo HY, Kim SJ, Kim WS, Park WY and Ko YH: Targeted deep sequencing of gastric marginal zone lymphoma identified alterations of TRAF3 and TNFAIP3 that were mutually exclusive for MALT1 rearrangement. Mod Pathol. 31:1418–1428. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cascione L, Rinaldi A, Bruscaggin A, Tarantelli C, Arribas AJ, Kwee I, Pecciarini L, Mensah AA, Spina V, Chung EYL, et al: Novel insights into the genetics and epigenetics of MALT lymphoma unveiled by next generation sequencing analyses. Haematologica. 104:e558–e561. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bonifer C, Levantini E, Kouskoff V and Lacaud G: Runx1 Structure and Function in Blood Cell Development. Adv Exp Med Biol. 962:65–81. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maki K, Yamagata T and Mitani K: Role of the RUNX1-EVI1 fusion gene in leukemogenesis. Cancer Sci. 99:1878–1883. 2008.PubMed/NCBI | |
Gaidzik VI, Teleanu V, Papaemmanuil E, Weber D, Paschka P, Hahn J, Wallrabenstein T, Kolbinger B, Köhne CH, Horst HA, et al: RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia. 30:22822016. View Article : Google Scholar : PubMed/NCBI | |
Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-Okochi N and Kurokawa M: A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol. 97:726–734. 2013. View Article : Google Scholar : PubMed/NCBI | |
Klaunig JE: Oxidative stress and cancer. Curr Pharm Des. 24:4771–4778. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reuter S, Gupta SC, Chaturvedi MM and Aggarwal BB: Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hartikainen JM, Tengström M, Winqvist R, Jukkola-Vuorinen A, Pylkäs K, Kosma VM, Soini Y and Mannermaa A: KEAP1 genetic polymorphisms associate with breast cancer risk and survival outcomes. Clin Cancer Res. 21:1591–1601. 2015. View Article : Google Scholar : PubMed/NCBI | |
Piazza R, Magistroni V, Redaelli S, Mauri M, Massimino L, Sessa A, Peronaci M, Lalowski M, Soliymani R, Mezzatesta C, et al: SETBP1 induces transcription of a network of development genes by acting as an epigenetic hub. Nat Commun. 9:21922018. View Article : Google Scholar : PubMed/NCBI | |
Montgomery SB, Goode DL, Kvikstad E, Albers CA, Zhang ZD, Mu XJ, Ananda G, Howie B, Karczewski KJ, Smith K, et al: The origin, evolution, and functional impact of short insertion-deletion variants identified in 179 human genomes. Genome Res. 23:749–761. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS and Cooper DN: The human gene mutation database: 2008 update. Genome Med. 1:132009. View Article : Google Scholar : PubMed/NCBI | |
Fisher G, Yang ZH, Kudahetti S, Møller H, Scardino P, Cuzick J and Berney DM; Transatlantic Prostate Group, : Prognostic value of Ki-67 for prostate cancer death in a conservatively managed cohort. Br J Cancer. 108:271–277. 2013. View Article : Google Scholar : PubMed/NCBI | |
Niemiec J: Ki-67 labelling index in human brain tumours. Folia Histochem Cytobiol. 39:259–262. 2001.PubMed/NCBI | |
Inwald EC, Klinkhammer-Schalke M, Hofstädter F, Zeman F, Koller M, Gerstenhauer M and Ortmann O: Ki-67 is a prognostic parameter in breast cancer patients: Results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat. 139:539–552. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jurić I, Pogorelić Z, Kuzmić-Prusac I, Biocić M, Jakovljević G, Stepan J, Zupancić B, Culić S and Kruslin B: Expression and prognostic value of the Ki-67 in Wilms tumor: Experience with 48 cases. Pediatr Surg Int. 26:487–493. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nadler A, Cukier M, Rowsell C, Kamali S, Feinberg Y, Singh S and Law CH: Ki-67 is a reliable pathological grading marker for neuroendocrine tumors. Virchows Arch. 462:501–505. 2013. View Article : Google Scholar : PubMed/NCBI | |
Broyde A, Boycov O, Strenov Y, Okon E, Shpilberg O and Bairey O: Role and prognostic significance of the Ki-67 index in non-Hodgkins lymphoma. Am J Hematol. 84:338–343. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bubán T, Schmidt M, Broll R, Antal-Szalmás P and Duchrow M: Detection of mutations in the cDNA of the proliferation marker Ki-67 protein in four tumor cell lines. Cancer Genet Cytogenet. 149:81–84. 2004. View Article : Google Scholar : PubMed/NCBI | |
Oh SY, Ryoo BY, Kim WS, Park YH, Kim K, Kim HJ, Kwon JM, Lee J, Ko YH, Ahn YC, et al: Nongastric marginal zone B-cell lymphoma: Analysis of 247 cases. Am J Hematol. 82:446–452. 2007. View Article : Google Scholar : PubMed/NCBI | |
Thieblemont C: Clinical presentation and management of marginal zone lymphomas. Hematology Am Soc Hematol Educ Program. 307–313. 2005. View Article : Google Scholar : PubMed/NCBI | |
Riva V and Maga G: From the magic bullet to the magic target: Exploiting the diverse roles of DDX3X in viral infections and tumorigenesis. Future Med Chem. 11:1357–1381. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ojha J, Secreto CR, Rabe KG, Van Dyke DL, Kortum KM, Slager SL, Shanafelt TD, Fonseca R, Kay NE and Braggio E: Identification of recurrent truncated DDX3X mutations in chronic lymphocytic leukaemia. Br J Haematol. 169:445–448. 2015. View Article : Google Scholar : PubMed/NCBI | |
Phung B, Cieśla M, Sanna A, Guzzi N, Beneventi G, Cao Thi Ngoc P, Lauss M, Cabrita R, Cordero E, Bosch A, et al: The X-Linked DDX3X RNA helicase dictates translation reprogramming and metastasis in melanoma. Cell Rep. 27:3573–3586 e3577. 2019. View Article : Google Scholar : PubMed/NCBI | |
Patmore DM, Jassim A, Nathan E, Gilbertson RJ, Tahan D, Hoffmann N, Tong Y, Smith KS, Kanneganti TD, Suzuki H, et al: DDX3X suppresses the susceptibility of hindbrain lineages to medulloblastoma. Dev Cell. S1534-5807(20)30416-0. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fenster SD and Garner CC: Gene structure and genetic localization of the PCLO gene encoding the presynaptic active zone protein Piccolo. Int J Dev Neurosci. 20:161–171. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C, Cruz-Gordillo P, Knoechel B, Asmann YW, Slager SL, et al: Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA. 109:3879–3884. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen JD and Evans RM: A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 377:454–457. 1995. View Article : Google Scholar : PubMed/NCBI | |
Battaglia S, Maguire O and Campbell MJ: Transcription factor co-repressors in cancer biology: Roles and targeting. Int J Cancer. 126:2511–2519. 2010.PubMed/NCBI | |
Rosenfeld JA, Coe BP, Eichler EE, Cuckle H and Shaffer L: Estimates of penetrance for recurrent pathogenic copy-number variations. Genet Med. 15:478–481. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nakamura M, Choe SK, Runko AP, Gardner PD and Sagerström C: Nlz1/Znf703 acts as a repressor of transcription. BMC Dev Biol. 8:1082008. View Article : Google Scholar : PubMed/NCBI | |
Pereira-Castro I, Costa AM, Oliveira MJ, Barbosa I, Rocha AS, Azevedo L and da Costa LT: Characterization of human NLZ1/ZNF703 identifies conserved domains essential for proper subcellular localization and transcriptional repression. J Cell Biochem. 114:120–133. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reynisdottir I, Arason A, Einarsdottir BO, Gunnarsson H, Staaf J, Vallon-Christersson J, Jonsson G, Ringnér M, Agnarsson BA, Olafsdottir K, et al: High expression of ZNF703 independent of amplification indicates worse prognosis in patients with luminal B breast cancer. Cancer Med. 2:437–446. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Ma F, Zhong M, Fang L, Peng Y, Xin X, Zhong J, Yuan F, Gu H, Zhu W and Zhang Y: ZNF703 acts as an oncogene that promotes progression in gastric cancer. Oncol Rep. 31:1877–1882. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ma F, Bi L, Yang G, Zhang M, Liu C, Zhao Y, Wang Y, Wang J, Bai Y and Zhang Y: ZNF703 promotes tumor cell proliferation and invasion and predicts poor prognosis in patients with colorectal cancer. Oncol Rep. 32:1071–1077. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baykara O, Dalay N, Kaynak K and Buyru N: ZNF703 Overexpression may act as an oncogene in non-small cell lung cancer. Cancer Med. 5:2873–2878. 2016. View Article : Google Scholar : PubMed/NCBI | |
Previs RA, Coleman RL, Harris AL and Sood AK: Molecular pathways: Translational and therapeutic implications of the Notch signaling pathway in cancer. Clin Cancer Res. 21:955–961. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ntziachristos P, Lim JS, Sage J and Aifantis I: From fly wings to targeted cancer therapies: A centennial for notch signaling. Cancer Cell. 25:318–334. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mirandola L, Comi P, Cobos E, Kast WM, Chiriva-Internati M and Chiaramonte R: Notchoing from T-cell to B-cell lymphoid malignancies. Cancer Lett. 308:1–13. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hozumi K, Negishi N, Suzuki D, Abe N, Sotomaru Y, Tamaoki N, Mailhos C, Ish-Horowicz D, Habu S and Owen MJ: Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol. 5:638–644. 2004. View Article : Google Scholar : PubMed/NCBI | |
Santos MA, Sarmento LM, Rebelo M, Doce AA, Maillard I, Dumortier A, Neves H, Radtke F, Pear WS, Parreira L and Demengeot J: Notch1 engagement by Delta-like-1 promotes differentiation of B lymphocytes to antibody-secreting cells. Proc Natl Acad Sci USA. 104:15454–15459. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mensah AA, Rinaldi A, Ponzoni M, Canzonieri V, Uccella S, Rossi D, Bhagat G, Gaidano G, Zucca E and Bertoni F: Absence of NOTCH1 gene mutations in MALT lymphomas. Br J Haematol. 157:382–384. 2012. View Article : Google Scholar : PubMed/NCBI |