1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Marks KM, West NP, Morris E and Quirke P:
Clinicopathological, genomic and immunological factors in
colorectal cancer prognosis. Br J Surg. 105:e99–e109. 2018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Nancy K: The management of resectable and
unresectable liver metastases from colorectal cancer. Curr Opin
Oncol. 22:364–373. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lupinacci RM, Andraus W, De Paiva Haddad
LB, Carneiro D′ Albuquerque LA and Herman P: Simultaneous
laparoscopic resection of primary colorectal cancer and associated
liver metastases: A systematic review. Tech Coloproctol.
18:129–135. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Dougan M and Dranoff G: Immune therapy for
cancer. Annu Rev Immunol. 27:83–117. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hanahan D and Coussens LM: Accessories to
the crime: Functions of cells recruited to the tumor
microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Charoentong P, Finotello F, Angelova M,
Mayer C, Efremova M, Rieder D, Hackl H and Trajanoski Z: Pan-cancer
immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade.
Cell Rep. 18:248–262. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Alexandrov LB, Nik-Zainal S, Wedge DC,
Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A,
Børresen-Dale AL, et al: Signatures of mutational processes in
human cancer. Nature. 500:415–421. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Le DT, Durham JN, Smith KN, Wang H,
Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et
al: Mismatch repair deficiency predicts response of solid tumors to
PD-1 blockade. Science. 357:409–413. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pastille E, Wasmer MH, Adamczyk A, Vu VP,
Mager LF, Phuong NNT, Palmieri V, Simillion C, Hansen W, Kasper S,
et al: The IL-33/ST2 pathway shapes the regulatory T cell phenotype
to promote intestinal cancer. Mucosal Immunol. 12:990–1003. 2019.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Yoshihara K, Shahmoradgoli M, Martínez E,
Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW,
Levine DA, et al: Inferring tumour purity and stromal and immune
cell admixture from expression data. Nat Commun. 4:26122013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Priedigkeit N, Watters RJ, Lucas PC,
Basudan A, Bhargava R, Horne W, Kolls JK, Fang Z, Rosenzweig MQ,
Brufsky AM, et al: Exome-capture RNA sequencing of decade-old
breast cancers and matched decalcified bone metastases. JCI
Insight. 2:e957032017. View Article : Google Scholar
|
13
|
Jia D, Li S, Li D, Xue H, Yang D and Liu
Y: Mining TCGA database for genes of prognostic value in
glioblastoma microenvironment. Aging (Albany NY). 10:592–605. 2018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Shah N, Wang P, Wongvipat J, Karthaus WR,
Abida W, Armenia J, Rockowitz S, Drier Y, Bernstein BE, Long HW, et
al: Regulation of the glucocorticoid receptor via a BET-dependent
enhancer drives antiandrogen resistance in prostate cancer. Elife.
6:e278612017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rooney MS, Shukla SA, Wu CJ, Getz G and
Hacohen N: Molecular and genetic properties of tumors associated
with local immune cytolytic activity. Cell. 160:48–61. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Hause RJ, Pritchard CC, Shendure J and
Salipante SJ: Corrigendum: Classification and characterization of
microsatellite instability across 18 cancer types. Nat Med.
23:12412017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Eide PW, Bruun J, Lothe RA and Sveen A:
CMScaller: An R package for consensus molecular subtyping of
colorectal cancer pre-clinical models. Sci Rep. 7:166182017.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Bhattacharya S, Andorf S, Gomes L, Dunn P,
Schaefer H, Pontius J, Berger P, Desborough V, Smith T, Campbell J,
et al: ImmPort: Disseminating data to the public for the future of
immunology. Immunol Res. 58:234–239. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mayakonda A and Koeffler HP: Maftools:
Maftools: Efficient analysis, visualization and summarization of
MAF files from large-scale cohort based cancer studies. BioRxiv.
0526622016.
|
20
|
Newman AM, Liu CL, Green MR, Gentles AJ,
Feng W, Xu Y, Hoang CD, Diehn M and Alizadeh AA: Robust enumeration
of cell subsets from tissue expression profiles. Nat Methods.
12:453–457. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Robinson MD, McCarthy DJ and Smyth GK:
edgeR: A bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu
JS, Li B and Liu XS: TIMER: A web server for comprehensive analysis
of tumor-infiltrating immune cells. Cancer Res. 77:e108–e110. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Smoot ME, Ono K, Ruscheinski J, Wang PL
and Ideker T: Cytoscape 2.8: New features for data integration and
network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Montojo J, Zuberi K, Rodriguez H, Kazi F,
Wright G, Donaldson SL, Morris Q and Bader GD: GeneMANIA Cytoscape
plugin: Fast gene function predictions on the desktop.
Bioinformatics. 26:2927–2928. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lin H and Zelterman D: Modeling survival
data: Extending the Cox model. Technometrics. 44:85–86. 2002.
View Article : Google Scholar
|
26
|
Park JH, Powell AG, Roxburgh CS, Horgan
PG, Mcmillan DC and Edwards J: Mismatch repair status in patients
with primary operable colorectal cancer: Associations with the
local and systemic tumour environment. Br J Cancer. 114:562–570.
2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Giannakis M, Mu XJ, Shukla SA, Qian ZR,
Cohen O, Nishihara R, Bahl S, Cao Y, Amin-Mansour A, Yamauchi M, et
al: Genomic correlates of immune-cell infiltrates in colorectal
carcinoma. Cell Rep. 15:857–865. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Narayanan S, Kawaguchi T, Yan L, Peng X,
Qi Q and Takabe K: Cytolytic activity score to assess anticancer
immunity in colorectal cancer. Ann Surg Oncol. 25:2323–2331. 2018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Huh JW, Lee JH and Kim HR: Prognostic
significance of tumor-infiltrating lymphocytes for patients with
colorectal cancer. Arch Surg. 147:366–372. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Rosenberg J and Huang J: CD8+ T
cells and NK cells: Parallel and complementary soldiers of
immunotherapy. Curr Opin Chem Eng. 19:9–20. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schumacher TN and Schreiber RD:
Neoantigens in cancer immunotherapy. Science. 348:69–74. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Brown SD, Warren RL, Gibb EA, Martin SD,
Spinelli JJ, Nelson BH and Holt RA: Neo-antigens predicted by tumor
genome meta-analysis correlate with increased patient survival.
Genome Res. 24:743–750. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kvistborg P, Shu CJ, Heemskerk B,
Fankhauser M, Thrue CA, Toebes M, van Rooij N, Linnemann C, van
Buuren MM, Urbanus JH, et al: TIL therapy broadens the
tumor-reactive CD8(+) T cell compartment in melanoma patients.
Oncoimmunology. 1:409–418. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Linnemann C, van Buuren MM, Bies L,
Verdegaal EM, Schotte R, Calis JJ, Behjati S, Velds A, Hilkmann H,
Atmioui DE, et al: High-throughput epitope discovery reveals
frequent recognition of neo-antigens by CD4+ T cells in
human melanoma. Nat Med. 21:81–85. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Perego P, Giarola M, Righetti SC, Supino
R, Caserini C, Delia D, Pierotti MA, Miyashita T, Reed JC and
Zunino F: Association between cisplatin resistance and mutation of
p53 gene and reduced bax expression in ovarian carcinoma cell
systems. Cancer Res. 56:556–562. 1996.PubMed/NCBI
|
36
|
Fearon ER and Vogelstein B: A genetic
model for colorectal tumorigenesis. Cell. 61:759–767. 1990.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Westra JL, Michael S, Harry H, de Boer JP,
Kraak MM, de Jong D, ter Elst A, Mulder NH, Buys CH, Hofstra RM and
nPlukker JT: Determination of TP53 mutation is more relevant than
microsatellite instability status for the prediction of
disease-free survival in adjuvant-treated stage III colon cancer
patients. J Clin Oncol. 23:5635–5643. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Borrero-Palacios A, Cebrián A, Gómez Del
Pulgar MT, García-Carbonero R, Garcia-Alfonso P, Aranda E, Elez E,
López-López R, Cervantes A, Valladares M, et al: Combination of
KIR2DS4 and FcγRIIa polymorphisms predicts the response to
cetuximab in KRAS mutant metastatic colorectal cancer. Sci Rep.
9:25892019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Alamo P, Gallardo A, Di Nicolantonio F,
Pavón MA, Casanova I, Trias M, Mangues MA, Lopez-Pousa A,
Villaverde A, Vázquez E, et al: Higher metastatic efficiency of
KRas G12V than KRas G13D in a colorectal cancer model. FASEB J.
29:464–476. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhong J, Zhao M, Ma Y, Luo Q, Liu J, Wang
J, Yuan X, Sang J and Huang C: UCHL1 acts as a colorectal cancer
oncogene via activation of the β-catenin/TCF pathway through its
deubiquitinating activity. Int J Mol Med. 30:430–436. 2012.
View Article : Google Scholar : PubMed/NCBI
|