1
|
Jacquemin P, Lannoy VJ, Rousseau GG and
Lemaigre FP: OC-2, a novel mammalian member of the ONECUT class of
homeodomain transcription factors whose function in liver partially
overlaps with that of hepatocyte nuclear factor-6. J Biol Chem.
274:2665–2671. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dusing MR, Maier EA, Aronow BJ and
Wiginton DA: Onecut-2 knockout mice fail to thrive during early
postnatal period and have altered patterns of gene expression in
small intestine. Physiol Genomics. 42:115–125. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Maier EA, Dusing MR and Wiginton DA:
Temporal regulation of enhancer function in intestinal epithelium:
A role for Onecut factors. J Biol Chem. 281:32263–32271. 2006.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Margagliotti S, Clotman F, Pierreux CE,
Beaudry JB, Jacquemin P, Rousseau GG and Lemaigre FP: The Onecut
transcription factors HNF-6/OC-1 and OC-2 regulate early liver
expansion by controlling hepatoblast migration. Dev Biol.
311:579–589. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Clotman F, Jacquemin P, Plumb-Rudewiez N,
Pierreux CE, Van der Smissen P, Dietz HC, Courtoy PJ, Rousseau GG
and Lemaigre FP: Control of liver cell fate decision by a gradient
of TGF beta signaling modulated by Onecut transcription factors.
Genes Dev. 19:1849–1854. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Laudadio I, Manfroid I, Achouri Y, Schmidt
D, Wilson MD, Cordi S, Thorrez L, Knoops L, Jacquemin P, Schuit F,
et al: A feedback loop between the liver-enriched transcription
factor network and miR-122 controls hepatocyte differentiation.
Gastroenterology. 142:119–129. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Goetz JJ, Martin GM, Chowdhury R and
Trimarchi JM: Onecut1 and Onecut2 play critical roles in the
development of the mouse retina. PLoS One. 9:e1101942014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Sapkota D, Chintala H, Wu F, Fliesler SJ,
Hu Z and Mu X: Onecut1 and Onecut2 redundantly regulate early
retinal cell fates during development. Proc Natl Acad Sci USA.
111:E4086–E4095. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
van der Raadt J, van Gestel SHC, Nadif
Kasri N and Albers CA: ONECUT transcription factors induce neuronal
characteristics and remodel chromatin accessibility. Nucleic Acids
Res. 47:5587–5602. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yamamoto F and Yamamoto M: Scanning copy
number and gene expression on the 18q21-qter chromosomal region by
the systematic multiplex PCR and reverse transcription-PCR methods.
Electrophoresis. 28:1882–1895. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Leyten GH, Hessels D, Smit FP, Jannink SA,
de Jong H, Melchers WJ, Cornel EB, de Reijke TM, Vergunst H, Kil P,
et al: Identification of a candidate gene panel for the early
diagnosis of prostate cancer. Clin Cancer Res. 21:3061–3070. 2015.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Sun Y, Shen S, Liu X, Tang H, Wang Z, Yu
Z, Li X and Wu M: MiR-429 inhibits cells growth and invasion and
regulates EMT-related marker genes by targeting Onecut2 in
colorectal carcinoma. Mol Cell Biochem. 390:19–30. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ranković B, Zidar N, Zlajpah M and
Bostjancic E: Epithelial-mesenchymal transition-related MicroRNAs
and their target genes in colorectal cancerogenesis. J Clin Med.
8:16032019. View Article : Google Scholar
|
14
|
Zhang J, Cheng J, Zeng Z, Wang Y, Li X,
Xie Q, Jia J, Yan Y, Guo Z, Gao J, et al: Comprehensive profiling
of novel microRNA-9 targets and a tumor suppressor role of
microRNA-9 via targeting IGF2BP1 in hepatocellular carcinoma.
Oncotarget. 6:42040–42052. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lu T, Wu B, Yu Y, Zhu W, Zhang S, Zhang Y,
Guo J and Deng N: Blockade of ONECUT2 expression in ovarian cancer
inhibited tumor cell proliferation, migration, invasion and
angiogenesis. Cancer Sci. 109:2221–2234. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ma Q, Wu K, Li H, Li H, Zhu Y, Hu G, Hu L
and Kong X: ONECUT2 overexpression promotes RAS-driven lung
adenocarcinoma progression. Sci Rep. 9:200212019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Abid MR, Guo S, Minami T, Spokes KC, Ueki
K, Skurk C, Walsh K and Aird WC: Vascular endothelial growth factor
activates PI3K/Akt/forkhead signaling in endothelial cells.
Arterioscler Thromb Vasc Biol. 24:294–300. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rotinen M, You S, Yang J, Coetzee SG,
Reis-Sobreiro M, Huang WC, Huang F, Pan X, Yáñez A, Hazelett DJ, et
al: ONECUT2 is a targetable master regulator of lethal prostate
cancer that suppresses the androgen axis. Nat Med. 24:1887–1898.
2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shen M, Dong C, Ruan X, Yan W, Cao M,
Pizzo D, Wu X, Yang L, Liu L, Ren X and Wang SE:
Chemotherapy-Induced Extracellular Vesicle miRNAs promote breast
cancer stemness by targeting ONECUT2. Cancer Res. 79:3608–3621.
2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Beukers W, Hercegovac A, Vermeij M,
Kandimalla R, Blok AC, van der Aa MM, Zwarthoff EC and Zuiverloon
TC: Hypermethylation of the polycomb group target gene PCDH7 in
bladder tumors from patients of all ages. J Urol. 190:311–316.
2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
van Kessel KE, Beukers W, Lurkin I,
Ziel-van der Made A, van der Keur KA, Boormans JL, Dyrskjot L,
Marquez M, Ørntoft TF, Real FX, et al: Validation of a DNA
methylation-mutation urine assay to select patients with hematuria
for cystoscopy. J Urol. 197:590–595. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu Y, Jiang G, Zhang N, Liu S, Lin X,
Perschon C, Zheng SL, Ding Q, Wang X, Na R, et al: HOXA9, PCDH17,
POU4F2, and ONECUT2 as a urinary biomarker combination for the
detection of bladder cancer in chinese patients with hematuria. Eur
Urol Focus. 6:284–291. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Guo H, Ci X, Ahmed M, Hua JT, Soares F,
Lin D, Puca L, Vosoughi A, Xue H, Li E, et al: ONECUT2 is a driver
of neuroendocrine prostate cancer. Nat Commun. 10:2782019.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Chung S, Nakagawa H, Uemura M, Piao L,
Ashikawa K, Hosono N, Takata R, Akamatsu S, Kawaguchi T, Morizono
T, et al: Association of a novel long non-coding RNA in 8q24 with
prostate cancer susceptibility. Cancer Sci. 102:245–252. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Pienta KJ and Bradley D: Mechanisms
underlying the development of androgen-independent prostate cancer.
Clin Cancer Res. 12:1665–1671. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Harris WP, Mostaghel EA, Nelson PS and
Montgomery B: Androgen deprivation therapy: Progress in
understanding mechanisms of resistance and optimizing androgen
depletion. Nat Clin Pract Urol. 6:76–85. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Aggarwal R, Huang J, Alumkal JJ, Zhang L,
Feng FY, Thomas GV, Weinstein AS, Friedl V, Zhang C, Witte ON, et
al: Clinical and genomic characterization of treatment-emergent
small-cell neuroendocrine prostate cancer: A Multi-institutional
prospective study. J Clin Oncol. 36:2492–2503. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lapuk AV, Wu C, Wyatt AW, McPherson A,
McConeghy BJ, Brahmbhatt S, Mo F, Zoubeidi A, Anderson S, Bell RH,
et al: From sequence to molecular pathology, and a mechanism
driving the neuroendocrine phenotype in prostate cancer. J Pathol.
227:286–297. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sharma NL, Massie CE, Ramos-Montoya A,
Zecchini V, Scott HE, Lamb AD, MacArthur S, Stark R, Warren AY,
Mills IG and Neal DE: The androgen receptor induces a distinct
transcriptional program in castration-resistant prostate cancer in
man. Cancer Cell. 23:35–47. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim J, Jin H, Zhao JC, Yang YA, Li Y, Yang
X, Dong X and Yu J: FOXA1 inhibits prostate cancer neuroendocrine
differentiation. Oncogene. 36:4072–4080. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ooi L and Wood IC: Chromatin crosstalk in
development and disease: Lessons from REST. Nat Rev Genet.
8:544–554. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Akamatsu S, Wyatt AW, Lin D, Lysakowski S,
Zhang F, Kim S, Tse C, Wang K, Mo F, Haegert A, et al: The
placental gene PEG10 promotes progression of neuroendocrine
prostate cancer. Cell Rep. 12:922–936. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cully M: Anticancer drugs: Cutting down on
prostate cancer metastases. Nat Rev Drug Discov. 18:172018.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
O'Brien SJ, Carter JV, Burton JF, Oxford
BG, Schmidt MN, Hallion JC and Galandiuk S: The role of the miR-200
family in epithelial-mesenchymal transition in colorectal cancer: A
systematic review. Int J Cancer. 142:2501–2511. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hui Z, Zhanwei W, Xi Y, Jin L, Jing Z and
Shuwen H: Construction of ceRNA coexpression network and screening
of molecular targets in colorectal cancer. Dis Markers.
2020:28605822020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang JD and Roberts LR: Epidemiology and
management of hepatocellular carcinoma. Infect Dis Clin North Am.
24899–919. (viii)2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M,
Li X and Tang H: MicroRNA-9 inhibits ovarian cancer cell growth
through regulation of NF-kappaB1. FEBS J. 276:5537–5546. 2009.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Wan HY, Guo LM, Liu T, Liu M, Li X and
Tang H: Regulation of the transcription factor NF-kappaB1 by
microRNA-9 in human gastric adenocarcinoma. Mol Cancer. 9:162010.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Song Y, Li J, Zhu Y, Dai Y, Zeng T, Liu L,
Li J, Wang H, Qin Y, Zeng M, et al: MicroRNA-9 promotes tumor
metastasis via repressing E-cadherin in esophageal squamous cell
carcinoma. Oncotarget. 5:11669–11680. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu W, Gao G, Hu X, Wang Y, Schwarz JK,
Chen JJ, Grigsby PW and Wang X: Activation of miR-9 by human
papillomavirus in cervical cancer. Oncotarget. 5:11620–11630. 2014.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Medema JP: Cancer stem cells: The
challenges ahead. Nat Cell Biol. 15:338–344. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Xie Y, Dang W, Zhang S, Yue W, Yang L,
Zhai X, Yan Q and Lu J: The role of exosomal noncoding RNAs in
cancer. Mol Cancer. 18:372019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hu J, Chen Y, Li X, Miao H, Li R, Chen D
and Wen Z: THUMPD3-AS1 is correlated with non-small cell lung
cancer and regulates self-renewal through miR-543 And ONECUT2. Onco
Targets Ther. 12:9849–9860. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Grossfeld GD, Litwin MS, Wolf JS, Jr,
Hricak H, Shuler CL, Agerter DC and Carroll PR: Evaluation of
asymptomatic microscopic hematuria in adults: The American
Urological Association best practice policy-part II: Patient
evaluation, cytology, voided markers, imaging, cystoscopy,
nephrology evaluation, and follow-up. Urology. 57:604–610. 2001.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Babjuk M, Burger M, Comperat EM, Gontero
P, Mostafid AH, Palou J, van Rhijn BWG, Roupret M, Shariat SF,
Sylvester R, et al: European association of urology guidelines on
Non-muscle-invasive bladder cancer (TaT1 and Carcinoma in
situ)-2019 update. Eur Urol. 76:639–657. 2019. View Article : Google Scholar : PubMed/NCBI
|