1
|
Summers N, Vanderpuye-Orgle J, Reinhart M,
Gallagher M and Sartor O: Efficacy and safety of post-docetaxel
therapies in metastatic castration-resistant prostate cancer: A
systematic review of the literature. Curr Med Res Opin.
33:1995–2008. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Best CJ, Gillespie JW, Yi YJ, Chandramouli
GV, Perlmutter MA, Gathright Y, Erickson HS, Georgevich L, Tangrea
MA, Duray PH, et al: Molecular alterations in primary prostate
cancer after androgen ablation therapy. Clin Cancer Res.
11:6823–6834. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dicitore A, Grassi ES, Borghi MO, Gelmini
G, Cantone MC, Gaudenzi G, Persani L, Caraglia M and Vitale G:
Antitumor activity of interferon-β1a in hormone refractory prostate
cancer with neuroendocrine differentiation. J Endocrinol Invest.
40:761–770. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Katzenwadel A and Wolf P: Androgen
deprivation of prostate cancer: Leading to a therapeutic dead end.
Cancer Lett. 367:12–17. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Boccellino M, Alaia C, Misso G, Cossu AM,
Facchini G, Piscitelli R, Quagliuolo L and Caraglia M: Gene
interference strategies as a new tool for the treatment of prostate
cancer. Endocrine. 49:588–605. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yao TT: The progress of cancer stem cells
in gynecology oncology. J Int Obstetrics Gynecol. 2010.
|
7
|
Farhana L, Antaki F, Anees MR,
Nangia-Makker P, Judd S, Hadden T, Levi E, Murshed F, Yu Y, Van
Buren E, et al: Role of cancer stem cells in racial disparity in
colorectal cancer. Cancer Med. 5:1268–1278. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lin F, Lin P, Zhao D, Chen Y, Xiao L, Qin
W, Li D, Chen H, Zhao B, Zou H, et al: Sox2 targets cyclinE, p27
and survivin to regulate androgen-independent human prostate cancer
cell proliferation and apoptosis. Cell Prolif. 45:207–216. 2012.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Dean M, Fojo T and Bates S: Tumour stem
cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu Z, Zhang W, Phillips JB, Arora R,
McClellan S, Li J, Kim JH, Sobol RW and Tan M: Immunoregulatory
protein B7-H3 regulates cancer stem cell enrichment and drug
resistance through MVP-mediated MEK activation. Oncogene.
38:88–102. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Najafi M, Farhood B and Mortezaee K:
Cancer stem cells (CSCs) in cancer progression and therapy. J Cell
Physiol. 234:8381–8395. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen J, Ding P, Li L, Gu H, Zhang X, Zhang
L, Wang N, Gan L, Wang Q, Zhang W and Hu W: CD59 regulation by SOX2
Is required for epithelial cancer stem cells to evade complement
surveillance. Stem Cell Reports. 8:140–151. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Amini S, Fathi F, Mobalegi J,
Sofimajidpour H and Ghadimi T: The expressions of stem cell
markers: Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3,
Dppa4, and Esrrb in bladder, colon, and prostate cancer, and
certain cancer cell lines. Anat Cell Biol. 47:1–11. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Balça-Silva J, Matias D, Dubois LG,
Carneiro B, do Carmo A, Girão H, Ferreira F, Ferrer VP, Chimelli L,
Filho PN, et al: The expression of connexins and SOX2 reflects the
plasticity of glioma stem-like cells. Transl Oncol. 10:555–569.
2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Basu-Roy U, Seo E, Ramanathapuram L, Rapp
TB, Perry JA, Orkin SH, Mansukhani A and Basilico C: Sox2 maintains
self renewal of tumor-initiating cells in osteosarcomas. Oncogene.
31:2270–2282. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Boumahdi S, Driessens G, Lapouge G, Rorive
S, Nassar D, Le Mercier M, Delatte B, Caauwe A, Lenglez S, Nkusi E,
et al: SOX2 controls tumour initiation and cancer stem-cell
functions in squamous-cell carcinoma. Nature. 511:246–250. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao D, Pan C, Sun J, Gilbert C,
Drews-Elger K, Azzam DJ, Picon-Ruiz M, Kim M, Ullmer W, El-Ashry D,
et al: VEGF drives cancer-initiating stem cells through
VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene.
34:3107–3119. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang S, Zheng J, Xiao X, Xu T, Tang W, Zhu
H, Yang L, Zheng S, Dong K, Zhou G and Wang Y: SOX2 promotes
tumorigenicity and inhibits the differentiation of I-type
neuroblastoma cells. Int J Oncol. 46:317–323. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Matsuoka J, Yashiro M, Sakurai K, Kubo N,
Tanaka H, Muguruma K, Sawada T, Ohira M and Hirakawa K: Role of the
stemness factors sox2, oct3/4, and nanog in gastric carcinoma. J
Surg Res. 174:130–135. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Matsuoka J, Yashiro M, Sakurai K, Kubo N,
Tanaka H, Muguruma K, Sawada T, Ohira M and Hirakawa K: Research
and progress on ClC2 (Review). Mol Med Rep. 16:11–22. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Abeyrathne PD, Chami M and Stahlberg H:
Biochemical and biophysical approaches to study the structure and
function of the chloride channel (ClC) family of proteins.
Biochimie 128–129. 154–162. 2016. View Article : Google Scholar
|
22
|
Zhao W, Lu M and Zhang Q: Chloride
intracellular channel 1 regulates migration and invasion in gastric
cancer by triggering the ROS-mediated p38 MAPK signaling pathway.
Mol Med Rep. 13:37112016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xu B, Mao J, Wang L, Zhu L, Li H, Wang W,
Jin X, Zhu J and Chen L: ClC-3 chloride channels are essential for
cell proliferation and cell cycle progression in nasopharyngeal
carcinoma cells. Acta Biochim Biophys Sin (Shanghai). 42:370–380.
2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li X, Wang T, Zhao Z and Weinman SA: The
ClC-3 chloride channel promotes acidification of lysosomes in
CHO-K1 and Huh-7 cells. Am J Physiol Cell Physiol. 282:C1483–C1491.
2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Suh KS, Malik M, Shukla A and Yuspa SH:
CLIC4, skin homeostasis and cutaneous cancer: Surprising
connections. Mol Carcinog. 46:599–604. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ponsioen B, van Zeijl L, Langeslag M,
Berryman M, Littler D, Jalink K and Moolenaar WH: Spatiotemporal
regulation of chloride intracellular channel protein CLIC4 by RhoA.
Mol Biol Cell. 20:4664–4672. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Huang W, Liu M, Zhu L, Liu S, Luo H, Ma L,
Wang H, Lu R, Sun X, Chen L and Wang L: Functional expression of
chloride channels and their roles in the cell cycle and cell
proliferation in highly differentiated nasopharyngeal carcinoma
cells. Physiol Rep. 2:e121372014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang GL, Wang XR, Lin MJ, He H, Lan XJ and
Guan YY: Deficiency in ClC-3 chloride channels prevents rat aortic
smooth muscle cell proliferation. Circ Res. 91:E28–E32. 2002.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Lee S, Kwon MC, Jang JP, Sohng JK and Jung
HJ: The ginsenoside metabolite compound K inhibits growth,
migration and stemness of glioblastoma cells. Int J Oncol.
51:414–424. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ye D, Luo H, Lai Z, Zou L, Zhu L, Mao J,
Jacob T, Ye W, Wang L and Chen L: ClC-3 chloride channel proteins
regulate the cell cycle by Up-regulating cyclin D1-CDK4/6 through
suppressing p21/p27 expression in nasopharyngeal carcinoma cells.
Sci Rep. 6:302762016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hatano Y, Fukuda S, Hisamatsu K, Hirata A,
Hara A and Tomita H: Multifaceted interpretation of colon cancer
stem cells. Int J Mol Sci. 18:14462017. View Article : Google Scholar
|
33
|
Franceschi E, Minichillo S and Brandes AA:
Pharmacotherapy of glioblastoma: Established treatments and
emerging concepts. CNS Drugs. 31:675–684. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang H, Zhu L, Zuo W, Luo H, Mao J, Ye D,
Li Y, Liu S, Wei Y, Ye W, et al: The ClC-3 chloride channel protein
is a downstream target of cyclin D1 in nasopharyngeal carcinoma
cells. Int J Biochem Cell Biol. 45:672–683. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tian Y, Guan Y, Jia Y, Meng Q and Yang J:
Chloride intracellular channel 1 regulates prostate cancer cell
proliferation and migration through the MAPK/ERK pathway. Cancer
Biother Radiopharm. 29:339–344. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Klumpp L, Sezgin EC, Eckert F and Huber
SM: Ion channels in brain metastasis. Int J Mol Sci. 17:15132016.
View Article : Google Scholar
|
37
|
Chen CD, Wang CS, Huang YH, Chien KY,
Liang Y, Chen WJ and Lin KH: Overexpression of CLIC1 in human
gastric carcinoma and its clinicopathological significance.
Proteomics. 7:155–1567. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Stühmer W and Pardo LA: (+) channels as
therapeutic targets in oncology. Future Med Chem. 2:745–755. 2010.
View Article : Google Scholar : PubMed/NCBI
|
39
|
McCalmont WF, Heady TN, Patterson JR,
Lindenmuth MA, Haverstick DM, Gray LS and Macdonald TL: Design,
synthesis, and biological evaluation of novel T-Type calcium
channel antagonists. Bioorg Med Chem Lett. 14:3691–3695. 2004.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Hong S, Bi M, Wang L, Kang Z, Ling L and
Zhao C: CLC-3 channels in cancer (Review). Oncol Rep. 33:507–514.
2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Guan YT, Xie Y, Zhou H, Shi HY, Zhu YY,
Zhang XL, Luan Y, Shen XM, Chen YP, Xu LJ, et al: Overexpression of
chloride channel-3 (ClC-3) is associated with human cervical
carcinoma development and prognosis. Cancer Cell Int. 19:82019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Wuebben EL and Rizzino A: The dark side of
SOX2: Cancer-a comprehensive overview. Oncotarget. 8:44917–44943.
2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bareiss PM, Paczulla A, Wang H, Schairer
R, Wiehr S, Kohlhofer U, Rothfuss OC, Fischer A, Perner S, Staebler
A, et al: SOX2 expression associates with stem cell state in human
ovarian carcinoma. Cancer Res. 73:5544–5555. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Li D, Zhao LN, Zheng XL, Lin P, Lin F, Li
Y, Zou HF, Cui RJ, Chen H and Yu XG: Sox2 is involved in paclitaxel
resistance of the prostate cancer cell line PC-3 via the PI3K/Akt
pathway. Mol Med Rep. 10:3169–3176. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Piva M, Domenici G, Iriondo O, Rábano M,
Simões BM, Comaills V, Barredo I, López-Ruiz JA, Zabalza I, Kypta R
and Vivanco MD: Sox2 promotes tamoxifen resistance in breast cancer
cells. EMBO Mol Med. 6:66–79. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Tian Y, Jia X, Wang S, Li Y, Zhao P, Cai
D, Zhou Z, Wang J, Luo Y and Dong M: SOX2 oncogenes amplified and
operate to activate AKT signaling in gastric cancer and predict
immunotherapy responsiveness. J Cancer Res Clin Oncol.
140:1117–1124. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Szaryńska M, Olejniczak A and Kmieć Z: The
role of cancer stem cells in pathogenesis of colorectal cancer.
Postepy Hig Med Dosw (Online). 70:1469–1482. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Stivarou T, Cipolleschi MG, D'Amico M,
Mannini A, Mini E, Rovida E, Dello Sbarba P, Olivotto M and Marzi
I: The complex metabolic network gearing the G1/S transition in
leukemic stem cells: Hints to a rational use of antineoplastic
agents. Oncotarget. 6:31985–31996. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Yamawaki K, Ishiguro T, Mori Y, Yoshihara
K, Suda K, Tamura R, Yamaguchi M, Sekine M, Kashima K, Higuchi M,
et al: Sox2-dependent inhibition of p21 is associated with poor
prognosis of endometrial cancer. Cancer Sci. 108:632–640. 2017.
View Article : Google Scholar : PubMed/NCBI
|