1
|
Barkal AA, Brewer RE, Markovic M, Kowarsky
M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal
LJ and Weissman IL: CD24 signalling through macrophage Siglec-10 is
a target for cancer immunotherapy. Nature. 572:392–396. 2019.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Gao A, Hu XL, Saeed M, Chen BF, Li YP and
Yu HJ: Overview of recent advances in liposomal nanoparticle-based
cancer immunotherapy. Acta Pharmacol Sin. 40:1129–1137. 2019.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Eroglu Z, Zaretsky JM, Hu-Lieskovan S, Kim
DW, Algazi A, Johnson DB, Liniker E, Kong B, Munhoz R, Rapisuwon S,
et al: High response rate to PD-1 blockade in desmoplastic
melanomas. Nature. 553:347–350. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jiang XM, Xu YL, Huang MY, Zhang LL, Su
MX, Chen X and Lu JJ: Osimertinib (AZD9291) decreases programmed
death ligand-1 in EGFR-mutated non-small cell lung cancer cells.
Acta Pharmacol Sin. 38:1512–1520. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rizvi NA, Hellmann MD, Snyder A, Kvistborg
P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al: Cancer
immunology. Mutational landscape determines sensitivity to PD-1
blockade in non-small cell lung cancer. Science. 348:124–128. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Royal RE, Levy C, Turner K, Mathur A,
Hughes M, Kammula US, Sherry RM, Topalian SL, Yang JC, Lowy I and
Rosenberg SA: Phase 2 trial of single agent Ipilimumab
(anti-CTLA-4) for locally advanced or metastatic pancreatic
adenocarcinoma. J Immunother. 33:828–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Thind K, Padrnos LJ, Ramanathan RK and
Borad MJ: Immunotherapy in pancreatic cancer treatment: A new
frontier. Therap Adv Gastroenterol. 10:168–194. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bayne LJ, Beatty GL, Jhala N, Clark CE,
Rhim AD, Stanger BZ and Vonderheide RH: Tumor-derived
granulocyte-macrophage colony-stimulating factor regulates myeloid
inflammation and T cell immunity in pancreatic cancer. Cancer Cell.
21:822–835. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Özdemir BC, Pentcheva-Hoang T, Carstens
JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C,
Novitskiy SV, et al: Depletion of carcinoma-associated fibroblasts
and fibrosis induces immunosuppression and accelerates pancreas
cancer with reduced survival. Cancer Cell. 25:719–734. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Panni RZ, Herndon JM, Zuo C, Hegde S, Hogg
GD, Knolhoff BL, Breden MA, Li X, Krisnawan VE, Khan SQ, et al:
Agonism of CD11b reprograms innate immunity to sensitize pancreatic
cancer to immunotherapies. Sci Transl Med. 11:eaau92402019.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Jiang H, Hegde S, Knolhoff BL, Zhu Y,
Herndon JM, Meyer MA, Nywening TM, Hawkins WG, Shapiro IM, Weaver
DT, et al: Targeting focal adhesion kinase renders pancreatic
cancers responsive to checkpoint immunotherapy. Nat Med.
22:851–860. 2016. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Mace TA, Shakya R, Pitarresi JR, Swanson
B, McQuinn CW, Loftus S, Nordquist E, Cruz-Monserrate Z, Yu L,
Young G, et al: IL-6 and PD-L1 antibody blockade combination
therapy reduces tumour progression in murine models of pancreatic
cancer. Gut. 67:320–332. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhou L, Husted H, Moore T, Lu M, Deng D,
Liu Y, Ramachandran V, Arumugam T, Niehrs C, Wang H, et al:
Suppression of stromal-derived Dickkopf-3 (DKK3) inhibits tumor
progression and prolongs survival in pancreatic ductal
adenocarcinoma. Sci Transl Med. 10:eaat34872018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Melo SA, Luecke LB, Kahlert C, Fernandez
AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari
N, et al: Glypican-1 identifies cancer exosomes and detects early
pancreatic cancer. Nature. 523:177–182. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bydoun M, Sterea A, Liptay H, Uzans A,
Huang WY, Rodrigues GJ, Weaver ICG, Gu H and Waisman DM: S100A10, a
novel biomarker in pancreatic ductal adenocarcinoma. Mol Oncol.
12:1895–1916. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tempero MA, Malafa MP, Chiorean EG, Czito
B, Scaife C, Narang AK, Fountzilas C, Wolpin BM, Al-Hawary M, Asbun
H, et al: Pancreatic adenocarcinoma, version 1.2019. J Natl Compr
Canc Netw. 17:202–210. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kuramitsu Y, Taba K, Ryozawa S, Yoshida K,
Zhang X, Tanaka T, Maehara SI, Maehara Y, Sakaida I and Nakamura K:
Identification of up- and down-regulated proteins in
gemcitabine-resistant pancreatic cancer cells using two-dimensional
gel electrophoresis and mass spectrometry. Anticancer Res.
30:3367–3372. 2010.PubMed/NCBI
|
18
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res.
45W:W98–W102. 2017. View Article : Google Scholar
|
19
|
Hata Y, Butz S and Südhof TC: Sudhof,
CASK: A novel dlg/PSD95 homolog with an N-terminal
calmodulin-dependent protein kinase domain identified by
interaction with neurexins. J Neurosci. 16:2488–2494. 1996.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Hsueh YP, Wang TF, Yang FC and Sheng M:
Nuclear translocation and transcription regulation by the
membrane-associated guanylate kinase CASK/LIN-2. Nature.
404:298–302. 2000. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Najm J, Horn D, Wimplinger I, Golden JA,
Chizhikov VV, Sudi J, Christian SL, Ullmann R, Kuechler A, Haas CA,
et al: Mutations of CASK cause an X-linked brain malformation
phenotype with microcephaly and hypoplasia of the brainstem and
cerebellum. Nat Genet. 40:1065–1067. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang Q, Lu J, Yang C, Wang X, Cheng L, Hu
G, Sun Y, Zhang X, Wu M and Liu Z: CASK and its target gene Reelin
were co-upregulated in human esophageal carcinoma. Cancer Lett.
179:71–77. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhou X, Xu G, Yin C, Jin W and Zhang G:
Down-regulation of miR-203 induced by Helicobacter pylori infection
promotes the proliferation and invasion of gastric cancer by
targeting CASK. Oncotarget. 5:11631–11640. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Roswarski J, Roschewski M, Lucas A, Melani
C, Pittaluga S, Jaffe ES, Steinberg SM, Waldmann TA and Wilson WH:
Phase I dose escalation study of the anti-CD2 monoclonal antibody,
siplizumab, with DA-EPOCH-R in aggressive peripheral T-cell
lymphomas. Leuk Lymphoma. 59:1466–1469. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Saygin C, Wiechert A, Rao VS, Alluri R,
Connor E, Thiagarajan PS, Hale JS, Li Y, Chumakova A, Jarrar A, et
al: CD55 regulates self-renewal and cisplatin resistance in
endometrioid tumors. J Exp Med. 214:2715–2732. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Leung TH, Tang HW, Siu MK, Chan DW, Chan
KK, Cheung AN and Ngan HY: Human papillomavirus E6 protein enriches
the CD55(+) population in cervical cancer cells, promoting
radioresistance and cancer aggressiveness. J Pathol. 244:151–163.
2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yamato I, Sho M, Nomi T, Akahori T,
Shimada K, Hotta K, Kanehiro H, Konishi N, Yagita H and Nakajima Y:
Clinical importance of B7-H3 expression in human pancreatic cancer.
Br J Cancer. 101:1709–1716. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shen DW and Gottesman MM: RAB8 enhances
TMEM205- mediated cisplatin resistance. Pharm Res. 29:643–650.
2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shen DW, Ma J, Okabe M, Zhang G, Xia D and
Gottesman MM: Elevated expression of TMEM205, a hypothetical
membrane protein, is associated with cisplatin resistance. J Cell
Physiol. 225:822–828. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Pascual G, Avgustinova A, Mejetta S,
Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A,
Hueto JA, et al: Targeting metastasis-initiating cells through the
fatty acid receptor CD36. Nature. 541:41–45. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kanzaki A, Hayette S, Morlé L, Inoue F,
Matsuyama R, Inoue T, Yawata A, Wada H, Vallier A, Alloisio N, et
al: Total absence of protein 4.2 and partial deficiency of band 3
in hereditary spherocytosis. Br J Haematol. 99:522–530. 1997.
View Article : Google Scholar : PubMed/NCBI
|