Latest evidence on immunotherapy for cholangiocarcinoma (Review)
- Authors:
- Xurui Guo
- Weizhang Shen
-
Affiliations: Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China - Published online on: October 23, 2020 https://doi.org/10.3892/ol.2020.12244
- Article Number: 381
-
Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rizvi S, Khan SA, Hallemeier CL, Kelley RK and Gores GJ: Cholangiocarcinoma-evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 15:95–111. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kendall T, Verheij J, Gaudio E, Evert M, Guido M, Goeppert B and Carpino G: Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 1:7–18. 2019. View Article : Google Scholar | |
Nakanishi Y, Zen Y, Kondo S, Itoh T, Itatsu K and Nakanuma Y: Expression of cell cycle-related molecules in biliary premalignant lesions: Biliary intraepithelial neoplasia and biliary intraductal papillary neoplasm. Hum Pathol. 39:1153–1161. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rizvi S and Gores GJ: Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 145:1215–1229. 2013. View Article : Google Scholar : PubMed/NCBI | |
Everhart JE and Ruhl CE: Burden of digestive diseases in the United States part III: Liver, biliary tract, and pancreas. Gastroenterology. 136:1134–1144. 2009. View Article : Google Scholar : PubMed/NCBI | |
Massarweh NN and El-Serag HB: Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Control. 24:10732748177292452017. View Article : Google Scholar : PubMed/NCBI | |
Labib PL, Goodchild G and Pereira SP: Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer. 19:1852019. View Article : Google Scholar : PubMed/NCBI | |
McGee EE, Castro FA, Engels EA, Freedman ND, Pfeiffer RM, Nogueira L, Stolzenberg-Solomon R, McGlynn KA, Hemminki K and Koshiol J: Associations between autoimmune conditions and hepatobiliary cancer risk among elderly US adults. Int J Cancer. 144:707–717. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brandi G, Venturi M, Pantaleo MA and Ercolani G; GICO: Cholangiocarcinoma: Current opinion on clinical practice diagnostic and therapeutic algorithms: A review of the literature and a long-standing experience of a referral center. Dig Liver Dis. 48:231–241. 2016. View Article : Google Scholar : PubMed/NCBI | |
Saeed A, Park R, Al-Jumayli M, Al-Rajabi R and Sun W: Biologics, immunotherapy, and future directions in the treatment of advanced cholangiocarcinoma. Clin Colorectal Cancer. 18:81–90. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y and Zang X: Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 21:24–33. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sato Y, Kinoshita M, Takemura S, Tanaka S, Hamano G, Nakamori S, Fujikawa M, Sugawara Y, Yamamoto T, Arimoto A, et al: The PD-1/PD-L1 axis may be aberrantly activated in occupational cholangiocarcinoma. Pathol Int. 67:163–170. 2017. View Article : Google Scholar : PubMed/NCBI | |
Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 537:417–421. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sabbatino F, Villani V, Yearley JH, Deshpande V, Cai L, Konstantinidis IT, Moon C, Nota S, Wang Y, Al-Sukaini A, et al: PD-L1 and HLA class I antigen expression and clinical course of the disease in intrahepatic cholangiocarcinoma. Clin Cancer Res. 22:470–478. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X and Wu K: Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 23:1292018. View Article : Google Scholar | |
Kwok G, Yau TC, Chiu JW, Tse E and Kwong YL: Pembrolizumab (Keytruda). Hum Vaccin Immunother. 12:2777–2789. 2016. View Article : Google Scholar : PubMed/NCBI | |
Piha-Paul SA, Oh DY, Ueno M, Malka D, Chung HC, Nagrial A, Kelley RK, Ros W, Italiano A, Nakagawa K, et al: Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies. Int J Cancer. 15:2190–2198. 2020. View Article : Google Scholar | |
Finkelmeier F, Waidmann O and Trojan J: Nivolumab for the treatment of hepatocellular carcinoma. Expert Rev Anticancer Ther. 18:1169–1175. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim RD, Chung V, Alese OB, El-Rayes BF, Li D, Al-Toubah TE, Schell MJ, Zhou JM, Mahipal A, Kim BH, et al: A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cance. JAMA Oncol. 6:1–8. 2020. View Article : Google Scholar | |
Pellino A, Loupakis F, Cadamuro M, Dadduzio V, Fassan M, Guido M, Cillo U, Indraccolo S and Fabris L: Precision medicine in cholangiocarcinoma. Transl Gastroenterol Hepatol. 3:402018. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et al: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 357:409–413. 2017. View Article : Google Scholar : PubMed/NCBI | |
Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, et al: Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 371:2189–2199. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu B, Tang L, Chen S, Yin C, Peng S, Li X, Liu T, Liu W, Han C, Stawski L, et al: Targeting the upstream transcriptional activator of PD-L1 as an alternative strategy in melanoma therapy. Oncogene. 37:4941–4954. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dudley JC, Lin MT, Le DT and Eshleman JR: Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 22:813–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stoiber S, Cadilha BL, Benmebarek MR, Lesch S, Endres S and Kobold S: Limitations in the design of chimeric antigen receptors for cancer therapy. Cells. 8:4722019. View Article : Google Scholar | |
Gomes da Silva D, Mukherjee M, Madhuwanti S, Dakhova O, Liu H, Grilley B, Gee AP, Neelapu SS, Rooney CM, Heslop HE, et al: Direct comparison of in vivo fate of second and third-generation CD19-specific chimeric antigen receptor (CAR)-T cells in patients with B-cell non-hodgkin lymphoma (B-NHL): Reversal of toxicity from tonic signaling. Biol Blood Marrow Transplant. 23:S55–S56. 2017. View Article : Google Scholar | |
Tokarew N, Ogonek J, Endres S, von Bergwelt-Baildon M and Kobold S: Teaching an old dog new tricks: Next-generation CAR T cells. Br J Cancer. 120:26–37. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Endres S and Kobold S: Enhancing tumor T cell infiltration to enable cancer immunotherapy. Immunotherapy. 11:201–213. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, Wu MF, Orange JS, Sumazin P, Man TK, et al: Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 20:506–518. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Li A, Liu Q, Li T, Yuan X, Han X and Wu K: Chimeric antigen receptor T cells: A novel therapy for solid tumors. J Hematol Oncol. 10:782017. View Article : Google Scholar : PubMed/NCBI | |
Feng KC, Guo YL, Liu Y, Dai HR, Wang Y, Lv HY, Huang JH, Yang QM and Hanet WD: Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol. 10:42017. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q, Wang Y, Jia H and Han W: Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res. 24:1277–1286. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu L and Wang J: T cell-redirecting bispecific antibodies in cancer immunotherapy: Recent advances. J Cancer Res Clin Oncol. 145:941–956. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chiu D, Tavaré R, Haber L, Aina OH, Vazzana K, Ram P, Danton M, Finney J, Jalal S, Krueger P, et al: A PSMA-Targeting CD3 bispecific antibody induces antitumor responses that are enhanced by 4-1BB costimulation. Cancer Immunol Res. 8:596–608. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yoon A, Lee S, Lee S, Lim S, Park YY, Song E, Kim DS, Kim K and Lim Y: A novel T cell-engaging bispecific antibody for treating mesothelin-positive solid tumors. Biomolecules. 10:3992020. View Article : Google Scholar | |
Thakur A, Scholler J, Schalk DL, June CH and Lum LG: Enhanced cytotoxicity against solid tumors by bispecific antibody-armed CD19 CAR T cells: A proof-of-concept study. J Cancer Res Clin Oncol. 146:2007–2016. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lum LG, Thakur A, Elhakiem A, Alameer L, Dinning E and Huang M: Anti-CS1 × anti-CD3 bispecific antibody (BiAb)-armed anti-CD3 activated T cells (CS1-BATs) kill CS1+ myeloma cells and release type-1 cytokines. Front Oncol. 10:5442020. View Article : Google Scholar : PubMed/NCBI | |
Cebada J, Flores A, Bandala C, Lizaliturri-Flores I, Villa-Ruano N and Perez-Santos M: Bispecific anti-PD-1/LAG-3 antibodies for treatment of advanced or metastatic solid tumors: A patent evaluation of US2018326054. Expert Opin Ther Pat. 30:1–8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yoshida H, Katayose Y, Unno M, Suzuki M, Kodama H, Takemura Si, Asano R, Hayashi H, Yamamoto K, Matsuno S, et al: A novel adenovirus expressing human 4-1BB ligand enhances antitumor immunity. Cancer Immunol Immunother. 52:97–106. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hill C and Carlisle R: Achieving systemic delivery of oncolytic viruses. Expert Opin Drug Deliv. 16:607–620. 2019. View Article : Google Scholar : PubMed/NCBI | |
Groeneveldt C, van Hall T, van der Burg SH, Ten Dijke P and van Montfoort N: Immunotherapeutic potential of TGF-β inhibition and oncolytic viruses. Trends Immunol. 41:406–420. 2020. View Article : Google Scholar : PubMed/NCBI | |
Marelli G, Howells A, Lemoine NR and Wang Y: Oncolytic viral therapy and the immune system: A double-edged sword against cancer. Front Immunol. 9:8662018. View Article : Google Scholar : PubMed/NCBI | |
Cervera-Carrascon V, Quixabeira DC, Havunen R, Santos JM, Kutvonen E, Clubb JH, Siurala M, Heiniö C, Zafar S, Koivula T, et al: Comparison of clinically relevant oncolytic virus platforms for enhancing T cell therapy of solid tumors. Mol Ther Oncolytics. 17:47–60. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hamid O, Ismail R and Puzanov I: Intratumoral immunotherapy-update 2019. Oncologist. 25:e423–e438. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahmed J, Chard LS, Yuan M, Wang J, Howells A, Li Y, Li H, Zhang Z, Lu S, Gao D, et al: A new oncolytic vacciniavirus augments antitumor immune responses to prevent tumor recurrence and metastasis after surgery. J Immunother Cancer. 8:e0004152020. View Article : Google Scholar : PubMed/NCBI | |
Zheng M, Huang J, Tong A and Yang H: Oncolytic viruses for cancer therapy: Barriers and recent advances. Mol Ther Oncolytics. 15:234–247. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reale A, Vitiello A, Conciatori V, Parolin C, Calistri A and Palù G: Perspectives on immunotherapy via oncolytic viruses. Infect Agent Cancer. 14:52019. View Article : Google Scholar : PubMed/NCBI | |
Lange S, Lampe J, Bossow S, Zimmermann M, Neubert W, Bitzer M and Laueret UM: A novel armed oncolytic measles vaccine virus for the treatment of cholangiocarcinoma. Hum Gene Ther. 24:554–564. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhu ZB, Chen Y, Makhija SK, Lu B, Wang M, Rivera AA, Yamamoto M, Wang S, Siegal GP, Curiel DT and McDonald JM: Survivin promoter-based conditionally replicative adenoviruses target cholangiocarcinoma. Int J Oncol. 29:1319–1329. 2006.PubMed/NCBI | |
Thomas S and Prendergast GC: Cancer vaccines: A brief overview. Methods Mol Biol. 1403:755–761. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Sakabe T, Abe H, Tanii M, Takahashi H, Chiba A, Yanagida E, Shibamoto Y, Ogasawara M, Tsujitani Si, et al: Dendritic cell-based immunotherapy targeting synthesized peptides for advanced biliary tract cancer. J Gastrointest Surg. 17:1609–1617. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiraviriyakul A, Songjang W, Kaewthet P, Tanawatkitichai P, Bayan P and Pongcharoen S: Honokiol-enhanced cytotoxic T lymphocyte activity against cholangiocarcinoma cells mediated by dendritic cells pulsed with damage-associated molecular patterns. World J Gastroenterol. 25:3941–3955. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shimizu K, Kotera Y, Aruga A, Takeshita N, Takasaki K and Yamamoto M: Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 19:171–178. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mou H, Yu L, Liao Q, Hou X, Wu Y, Cui Q, Yan N, Ma R, Wang L, Yao M and Wang K: Successful response to the combination of immunotherapy and chemotherapy in cholangiocarcinoma with high tumour mutational burden and PD-L1 expression: A case report. BMC Cancer. 18:11052018. View Article : Google Scholar : PubMed/NCBI | |
Feng K, Liu Y, Zhao Y, Yang Q, Dong L, Liu J, Li X, Zhao Z, Mei Q and Han W: Efficacy and biomarker analysis of nivolumab plus gemcitabine and cisplatin in patients with unresectable or metastatic biliary tract cancers: Results from a phase II study. J Immunother Cancer. 8:e0003672020. View Article : Google Scholar : PubMed/NCBI | |
Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, et al: Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 362:1273–1281. 2010. View Article : Google Scholar : PubMed/NCBI | |
Malka D, Cervera P, Foulon S, Trarbach T, de la Fouchardière C, Boucher E, Fartoux L, Faivre S, Blanc JF, Viret F, et al: Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): A randomised, open-label, non-comparative phase 2 trial. Lancet Oncol. 15:819–828. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sui M, Li Y, Wang H, Luo Y, Wan T, Wang X, Hu B, Cheng Y, Lv X, Xin X, et al: Two cases of intrahepatic cholangiocellular carcinoma with high insertion-deletion ratios that achieved a complete response following chemotherapy combined with PD-1 blockade. J Immunother Cancer. 7:1252019. View Article : Google Scholar : PubMed/NCBI | |
Formenti SC: Immunological aspects of local radiotherapy: Clinical relevance. Discov Med. 9:119–124. 2010.PubMed/NCBI | |
Liu X, Yao J, Song L, Zhang S, Huang T and Li Y: Local and abscopal responses in advanced intrahepatic cholangiocarcinoma with low TMB, MSS, pMMR and negative PD-L1 expression following combined therapy of SBRT with PD-1 blockade. J Immunother Cancer. 7:2042019. View Article : Google Scholar : PubMed/NCBI | |
Jarnagin WR, Zager JS, Hezel M, Stanziale SF, Adusumilli PS, Gonen M, Ebright MI, Culliford A, Gusani NJ, Fong Y, et al: Treatment of cholangiocarcinoma with oncolytic herpes simplex virus combined with external beam radiation therapy. Cancer Gene Ther. 13:326–334. 2006. View Article : Google Scholar : PubMed/NCBI | |
Churi CR, Shroff R, Wang Y, Rashid A, Kang HC, Weatherly J, Zuo M, Zinner R, Hong D, Meric-Bernstam F, et al: Mutation profiling in cholangiocarcinoma: Prognostic and therapeutic implications. PLoS One. 9:e1153832014. View Article : Google Scholar : PubMed/NCBI | |
Mazzaferro V, El-Rayes BF, Busset MD, Cotsoglou C, Harris WP, Damjanov N, Masi G, Rimassa L, Personeni N, Braiteh F, et al: Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br J Cancer. 120:165–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abou-Alfa GK, Sahai V, Hollebecque A, Vaccaro G, Melisi D, Al-Rajabi R, Paulson AS, Borad MJ, Gallinson D, Murphy AG, et al: Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol. 21:671–684. 2020. View Article : Google Scholar : PubMed/NCBI | |
Suyama K and Iwase H: Lenvatinib: A promising molecular targeted agent for multiple cancers. Cancer Control. 25:10732748187893612018. View Article : Google Scholar : PubMed/NCBI | |
Chen WX, Li GX, Hu ZN, Zhu P, Zhang BX and Ding ZY: Significant response to anti-PD-1 based immunotherapy plus lenvatinib for recurrent intrahepatic cholangiocarcinoma with bone metastasis: A case report and literature review. Medicine (Baltimore). 98:e178322019. View Article : Google Scholar : PubMed/NCBI | |
Klein O, Kee D, Nagrial A, Markman B, Underhill C, Michael M, Jackett L, Lum C, Behren A, Palmer J, et al: Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: Subgroup analysis of a phase 2 nonrandomized clinical trial. JAMA Oncol. 30:e2028142020. | |
Simone V, Brunetti O, Lupo L, Testini M, Maiorano E, Simone M, Longo V, Rolfo C, Peeters M, Scarpa A, et al: Targeting angiogenesis in biliary tract cancers: An open option. Int J Mol Sci. 18:4182017. View Article : Google Scholar | |
Fukumura D, Kloepper J, Amoozgar Z, Duda DG and Jain RK: Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol. 15:325–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yoshikawa D, Ojima H, Iwasaki M, Hiraoka N, Kosuge T, Kasai S, Hirohashi S and Shibata T: Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer. 98:418–425. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK and Seed B: Tumor induction of VEGF promoter activity in stromal cells. Cell. 94:715–725. 1998. View Article : Google Scholar : PubMed/NCBI | |
Guion-Dusserre JF, Lorgis V, Vincent J, Bengrine L and Ghiringhelli F: FOLFIRI plus bevacizumab as a second-line therapy for metastatic intrahepatic cholangiocarcinoma. World J Gastroenterol. 21:2096–2101. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pan TT, Wang W, Jia WD and Xu GL: A single-center experience of sorafenib monotherapy in patients with advanced intrahepatic cholangiocarcinoma. Oncol Lett. 13:2957–2964. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Patel A, Normolle D, Patel K, Ohr J, Lee JJ, Bahary N, Chu E, Streeter N and Drummond S: A phase 2 trial of regorafenib as a single agent in patients with chemotherapy-refractory, advanced, and metastatic biliary tract adenocarcinoma. Cancer. 125:902–909. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schmittnaegel M, Rigamonti N, Kadioglu E, Cassará A, Rmili CW, Kiialainen A, Kienast Y, Mueller HJ, Ooi CH, Laoui D and De Palma M: Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med. 9:eaak96702017. View Article : Google Scholar : PubMed/NCBI | |
Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP and Bergers G: Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med. 9:eaak96792017. View Article : Google Scholar : PubMed/NCBI | |
Arkenau HT, Martin-Liberal J, Calvo E, Penel N, Krebs MG, Herbst RS, Walgren RA, Widau RC, Mi G, Jin J, et al: Ramucirumab plus pembrolizumab in patients with previously treated advanced or metastatic biliary tract cancer: Nonrandomized, open-label, phase i trial (JVDF). Oncologist. 23:e1407–e1436. 2018. View Article : Google Scholar | |
Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta AD, Delord JP, Geva R, Gottfried M, Penel N, Hansen AR, et al: Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study. J Clin Oncol. 38:1–10. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ott PA, Bang YJ, Piha-Paul SA, Razak AR, Bennouna J, Soria JC, Rugo HS, Cohen RB, ONeil BH, Mehnert JM, et al: T-Cell-Inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 37:318–327. 2019. View Article : Google Scholar : PubMed/NCBI |