1
|
Yudate HT, Suwa M, Irie R, Matsui H,
Nishikawa T, Nakamura Y, Yamaguchi D, Peng ZZ, Yamamoto T, Nagai K,
et al: HUNT: Launch of a full-length cDNA database from the Helix
Research Institute. Nucleic Acids Res. 29:185–188. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ota T, Suzuki Y, Nishikawa T, Otsuki T,
Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, et al:
Complete sequencing and characterization of 21,243 full-length
human cDNAs. Nat Genet. 36:40–45. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Resing KA, Meyer-Arendt K, Mendoza AM,
Aveline-Wolf LD, Jonscher KR, Pierce KG, Old WM, Cheung HT, Russell
S, Wattawa JL, et al: Improving reproducibility and sensitivity in
identifying human proteins by shotgun proteomics. Anal Chem.
76:3556–3568. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tanner S, Shen Z, Ng J, Florea L, Guigó R,
Briggs SP and Bafna V: Improving gene annotation using peptide mass
spectrometry. Genome Res. 17:231–239. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu Y, Yan X and Zhou T: TBCK influences
cell proliferation, cell size and mTOR signaling pathway. PLoS One.
8:e713492013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wu J, Li Q, Li Y, Lin J, Yang D, Zhu G,
Wang L, He D, Lu G and Zeng C: A long type of TBCK is a novel
cytoplasmic and mitotic apparatus-associated protein likely
suppressing cell proliferation. J Genet Genomics. 41:69–72. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Uhlén M, Zhang C, Lee S, Sjöstedt E,
Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et
al: A pathology atlas of the human cancer transcriptome. Science.
357:eaan25072017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Thul PJ, Akesson L, Wiking M, Mahdessian
D, Geladaki A, Blal HA, Alm T, Asplund A, Björk L, Breckels LM, et
al: A subcellular map of the human proteome. Science.
356:eaal33212017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Uhlén M, Fagerberg L, Hallström BM,
Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C,
Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the
human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Manning G, Whyte DB, Martinez R, Hunter T
and Sudarsanam S: The protein kinase complement of the human
genome. Science. 298:1912–1934. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Komurov K, Padron D, Cheng T, Roth M,
Rosenblatt KP and White MA: Comprehensive mapping of the human
kinome to epidermal growth factor receptor signaling. J Biol Chem.
285:21134–21142. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen G, Yang N, Wang X, Zheng SY, Chen Y,
Tong LJ, Li YX, Meng LH and Ding J: Identification of p27/KIP1
expression level as a candidate biomarker of response to rapalogs
therapy in human cancer. J Mol Med (Berl). 88:941–952. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Pan X, Eathiraj S, Munson M and Lambright
DG: TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a
dual-finger mechanism. Nature. 442:303–306. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Itoh T, Satoh M, Kanno E and Fukuda M:
Screening for target Rabs of TBC (Tre-2/Bub2/Cdc16)
domain-containing proteins based on their Rab-binding activity.
Genes Cells. 11:1023–1037. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chong JX, Caputo V, Phelps IG, Stella L,
Worgan L, Dempsey JC, Nguyen A, Leuzzi V, Webster R, Pizzuti A, et
al University of Washington Center for Mendelian Genomics, :
Recessive inactivating mutations in TBCK, encoding a rab
GTPase-activating protein, cause severe infantile syndromic
encephalopathy. Am J Hum Genet. 98:772–781. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Binder JX, Pletscher-Frankild S, Tsafou K,
Stolte C, ODonoghue SI, Schneider R and Jensen LJ: COMPARTMENTS:
Unification and visualization of protein subcellular localization
evidence. Database (Oxford). Feb 25–2014.(Epub ahead of print).
doi: 10.1093/database/bau012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Szklarczyk D, Gable AL, Lyon D, Junge A,
Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork
P, et al: STRING v11: Protein-protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47:D607–D613. 2019.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Szklarczyk D, Morris JH, Cook H, Kuhn M,
Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al:
The STRING database in 2017: Quality-controlled protein-protein
association networks, made broadly accessible. Nucleic Acids Res.
45:D362–D368. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Szklarczyk D, Franceschini A, Wyder S,
Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos
A, Tsafou KP, et al: STRING v10: Protein-protein interaction
networks, integrated over the tree of life. Nucleic Acids Res.
43:D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Franceschini A, Szklarczyk D, Frankild S,
Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering
C, et al: STRING v9.1: Protein-protein interaction networks, with
increased coverage and integration. Nucleic Acids Res.
41:D808–D815. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Szklarczyk D, Franceschini A, Kuhn M,
Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork
P, et al: The STRING database in 2011: Functional interaction
networks of proteins, globally integrated and scored. Nucleic Acids
Res. 39:D561–D568. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jensen LJ, Kuhn M, Stark M, Chaffron S,
Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, et
al: STRING 8 - a global view on proteins and their functional
interactions in 630 organisms. Nucleic Acids Res. 37:D412–D416.
2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
von Mering C, Jensen LJ, Kuhn M, Chaffron
S, Doerks T, Krüger B, Snel B and Bork P: STRING 7 - recent
developments in the integration and prediction of protein
interactions. Nucleic Acids Res. 35:D358–D362. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
von Mering C, Jensen LJ, Snel B, Hooper
SD, Krupp M, Foglierini M, Jouffre N, Huynen MA and Bork P: STRING:
Known and predicted protein-protein associations, integrated and
transferred across organisms. Nucleic Acids Res. 33:D433–D437.
2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
von Mering C, Huynen M, Jaeggi D, Schmidt
S, Bork P and Snel B: STRING: A database of predicted functional
associations between proteins. Nucleic Acids Res. 31:258–261. 2003.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Snel B, Lehmann G, Bork P and Huynen MA:
STRING: A web-server to retrieve and display the repeatedly
occurring neighbourhood of a gene. Nucleic Acids Res. 28:3442–3444.
2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Alazami AM, Patel N, Shamseldin HE, Anazi
S, Al-Dosari MS, Alzahrani F, Hijazi H, Alshammari M, Aldahmesh MA,
Salih MA, et al: Accelerating novel candidate gene discovery in
neurogenetic disorders via whole-exome sequencing of prescreened
multiplex consanguineous families. Cell Rep. 10:148–161. 2015.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Bhoj EJ, Li D, Harr M, Edvardson S,
Elpeleg O, Chisholm E, Juusola J, Douglas G, Guillen Sacoto MJ,
Siquier-Pernet K, et al: Mutations in TBCK, encoding
TBC1-domain-containing kinase, lead to a recognizable syndrome of
intellectual disability and hypotonia. Am J Hum Genet. 98:782–788.
2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Guerreiro RJ, Brown R, Dian D, de Goede C,
Bras J and Mole SE: Mutation of TBCK causes a rare recessive
developmental disorder. Neurol Genet. 2:e762016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mandel H, Khayat M, Chervinsky E, Elpeleg
O and Shalev S: TBCK-related intellectual disability syndrome: Case
study of two patients. Am J Med Genet A. 173:491–494. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zapata-Aldana E, Kim DD, Remtulla S,
Prasad C, Nguyen CT and Campbell C: Further delineation of TBCK -
Infantile hypotonia with psychomotor retardation and characteristic
facies type 3. Eur J Med Genet. 62:273–277. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Beck-Wödl S, Harzer K, Sturm M, Buchert R,
Riess O, Mennel HD, Latta E, Pagenstecher A and Keber U: Homozygous
TBC1 domain-containing kinase (TBCK) mutation causes a novel
lysosomal storage disease - a new type of neuronal ceroid
lipofuscinosis (CLN15)? Acta Neuropathol Commun. 6:1452018.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Sumathipala D, Strømme P, Gilissen C,
Corominas J, Frengen E and Misceo D: TBCK encephaloneuropathy with
abnormal lysosomal storage: Use of a structural variant
bioinformatics pipeline on whole-genome sequencing data unravels a
20-year-old clinical mystery. Pediatr Neurol. 96:74–75. 2019.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Saredi S, Cauley ES, Ruggieri A, Spivey
TM, Ardissone A, Mora M, Moroni I and Manzini MC: Myopathic changes
associated with psychomotor delay and seizures caused by a novel
homozygous mutation in TBCK. Muscle Nerve. 62:266–271. 2020.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Tsang MH, Kwong AK, Chan KL, Fung JL, Yu
MH, Mak CC, Yeung KS, Rodenburg RJ, Smeitink JA, Chan R, et al:
Delineation of molecular findings by whole-exome sequencing for
suspected cases of paediatric-onset mitochondrial diseases in the
Southern Chinese population. Hum Genomics. 14:282020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hartley T, Wagner JD, Warman-Chardon J,
Tétreault M, Brady L, Baker S, Tarnopolsky M, Bourque PR,
Parboosingh JS, Smith C, et al FORGE Canada Consortium; Care4Rare
Canada Consortium, : Whole-exome sequencing is a valuable
diagnostic tool for inherited peripheral neuropathies: Outcomes
from a cohort of 50 families. Clin Genet. 93:301–309. 2018.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Ortiz-González XR, Tintos-Hernández JA,
Keller K, Li X, Foley AR, Bharucha-Goebel DX, Kessler SK, Yum SW,
Crino PB, He M, et al: Homozygous boricua TBCK mutation causes
neurodegeneration and aberrant autophagy. Ann Neurol. 83:153–165.
2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Nagy Á, Lánczky A, Menyhárt O and Győrffy
B: Validation of miRNA prognostic power in hepatocellular carcinoma
using expression data of independent datasets. Sci Rep. 8:1–9.
2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kim EA, Jang JH, Sung EG, Song IH, Kim JY
and Lee TJ: MiR-1208 increases the sensitivity to cisplatin by
targeting TBCK in renal cancer cells. Int J Mol Sci. 20:35402019.
View Article : Google Scholar
|
40
|
Hanks SK and Hunter T: Protein kinases 6.
The eukaryotic protein kinase superfamily: Kinase (catalytic)
domain structure and classification. FASEB J. 9:576–596. 1995.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Boudeau J, Miranda-Saavedra D, Barton GJ
and Alessi DR: Emerging roles of pseudokinases. Trends Cell Biol.
16:443–452. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Scheeff ED, Eswaran J, Bunkoczi G, Knapp S
and Manning G: Structure of the pseudokinase VRK3 reveals a
degraded catalytic site, a highly conserved kinase fold, and a
putative regulatory binding site. Structure. 17:128–138. 2009.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Barr F and Lambright DG: Rab GEFs and
GAPs. Curr Opin Cell Biol. 22:461–470. 2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
Gavriljuk K, Gazdag EM, Itzen A, Kötting
C, Goody RS and Gerwert K: Catalytic mechanism of a mammalian
Rab·RabGAP complex in atomic detail. Proc Natl Acad Sci USA.
109:21348–21353. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Cherfils J and Zeghouf M: Regulation of
small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 93:269–309.
2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Biasini M, Bienert S, Waterhouse A, Arnold
K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M,
Bordoli L, et al: SWISS-MODEL: Modelling protein tertiary and
quaternary structure using evolutionary information. Nucleic Acids
Res. 42:W252–W258. 2014. View Article : Google Scholar : PubMed/NCBI
|