Regulation of microRNA‑497 expression in human cancer (Review)
- Authors:
- Guanshui Luo
- Ke He
- Zhenglin Xia
- Shuai Liu
- Hong Liu
- Guoan Xiang
-
Affiliations: Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China - Published online on: November 11, 2020 https://doi.org/10.3892/ol.2020.12284
- Article Number: 23
-
Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shenouda SK and Alahari SK: MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer Metastasis Rev. 28:369–378. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391:806–811. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kozomara A, Birgaoanu M and Griffiths-Jones S: miRBase: From microRNA sequences to function. Nucleic Acids Res. 47:D155–D162. 2019. View Article : Google Scholar : PubMed/NCBI | |
Joyce BT, Zheng Y, Zhang Z, Liu L, Kocherginsky M, Murphy R, Achenbach CJ, Musa J, Wehbe F, Just A, et al: miRNA-processing gene methylation and cancer risk. Cancer Epidemiol Biomarkers Prev. 27:550–557. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Xiong G, Cao Z, Zheng S, You L, Zhang T and Zhao Y: miR-497 expression, function and clinical application in cancer. Oncotarget. 7:55900–55911. 2016. View Article : Google Scholar : PubMed/NCBI | |
Menigatti M, Staiano T, Manser CN, Bauerfeind P, Komljenovic A, Robinson M, Jiricny J, Buffoli F and Marra G: Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions. Oncogenesis. 2:e562013. View Article : Google Scholar : PubMed/NCBI | |
Itesako T, Seki N, Yoshino H, Chiyomaru T, Yamasaki T, Hidaka H, Yonezawa T, Nohata N, Kinoshita T, Nakagawa M and Enokida H: The microRNA expression signature of bladder cancer by deep sequencing: The functional significance of the miR-195/497 cluster. PLoS One. 9:e843112014. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Danaher RJ, Miller CS, Berger JR, Nubia VG, Wilfred BS, Neltner JH, Norris CM and Nelson PT: Expression of miR-15/107 family microRNAs in human tissues and cultured rat brain cells. Genomics Proteomics Bioinformatics. 12:19–30. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yan L, Huang X, Shao Q, Huang M, Deng L, Wu Q, Zeng Y and Shao J: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14:2348–2360. 2008. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D and Wang Y: Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroen Hepatol. 24:652–657. 2009. View Article : Google Scholar | |
Flavin RJ, Smyth PC, Laios A, O'Toole SA, Barrett C, Finn SP, Russell S, Ring M, Denning KM, Li J, et al: Potentially important microRNA cluster on chromosome 17p13.1 in primary peritoneal carcinoma. Mod Pathol. 22:197–205. 2009. View Article : Google Scholar : PubMed/NCBI | |
Özata DM, Caramuta S, Velázquez-Fernández D, Akçakaya P, Xie H, Höög A, Zedenius J, Bäckdahl M, Larsson C and Lui W: The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma. Endocr-Relat Cancer. 18:643–655. 2011. View Article : Google Scholar : PubMed/NCBI | |
Caramuta S, Lee L, Ozata DM, Akçakaya P, Xie H, Höög A, Zedenius J, Bäckdahl M, Larsson C and Lui WO: Clinical and functional impact of TARBP2 over-expression in adrenocortical carcinoma. Endocr Relat Cancer. 20:551–564. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Wang C, Chen X, Chen S, Zhang Y, Zhi F, Wang J, Li L, Zhou X, Li N, et al: Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer. 132:116–127. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, Yang RH, Feng Y, Wang FH, Tseng HY, et al: MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene. 32:1910–1920. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Jiang CF, Li DM, Ge X, Shi ZM, Li CY, Liu X, Yin Y, Zhen L, Liu LZ and Jiang BH: MicroRNA-497 inhibits tumor growth and increases chemosensitivity to 5-fluorouracil treatment by targeting KSR1. Oncotarget. 7:2660–2671. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Shen Q and Zhang P: miR-497 suppresses epithelial-mesenchymal transition and metastasis in colorectal cancer cells by targeting fos-related antigen-1. Onco Targets Ther. 9:6597–6604. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Chen J, Gao C, Zhu D, Xu X, Wu C and Jiang J: MicroRNA-497 inhibits tumor growth through targeting insulin receptor substrate 1 in colorectal cancer. Oncol Lett. 14:6379–6386. 2017.PubMed/NCBI | |
Hong S, Yan Z, Wang H, Ding L and Bi M: Up-regulation of microRNA-497-5p inhibits colorectal cancer cell proliferation and invasion via targeting PTPN3. Biosci Rep. 39:BSR201911232019. View Article : Google Scholar : PubMed/NCBI | |
Namløs HM, Meza-Zepeda LA, Barøy T, Østensen IHG, Kresse SH, Kuijjer ML, Serra M, Bürger H, Cleton-Jansen AM and Myklebost O: Modulation of the osteosarcoma expression phenotype by microRNAs. PLoS One. 7:e480862012. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Shen D, Zhou X, Chen X and Wang W: MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor. Surgery. 153:836–847. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Wei RR, Huang GL, Zhang MY, Yuan YF and Wang HY: Checkpoint kinase 1 is negatively regulated by miR-497 in hepatocellular carcinoma. Med Oncol. 31:8442014. View Article : Google Scholar : PubMed/NCBI | |
He XX, Kuang SZ, Liao JZ, Xu CR, Chang Y, Wu YL, Gong J, Tian DA, Guo AY and Lin JS: The regulation of microRNA expression by DNA methylation in hepatocellular carcinoma. Mol Biosyst. 11:532–539. 2015. View Article : Google Scholar : PubMed/NCBI | |
Furuta M, Kozaki K, Tanimoto K, Tanaka S, Arii S, Shimamura T, Niida A, Miyano S and Inazawa J: The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma. PLoS One. 8:e601552013. View Article : Google Scholar : PubMed/NCBI | |
Yan JJ, Zhang YN, Liao JZ, Ke KP, Chang Y, Li PY, Wang M, Lin JS and He XX: miR-497 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting VEGFA and AEG-1. Oncotarget. 6:29527–29542. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ding Q, He K, Luo T, Deng Y, Wang H, Liu H, Zhang J, Chen K, Xiao J, Duan X, et al: SSRP1 contributes to the malignancy of hepatocellular carcinoma and is negatively regulated by miR-497. Mol Ther. 24:903–914. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen L, Li J, Xu L, Ma J, Li H, Xiao X, Zhao J and Fang L: miR-497 induces apoptosis of breast cancer cells by targeting Bcl-w. Exp Ther Med. 3:475–480. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y, Zou C, Zhang X, Liu S, Wang X, et al: Analysis of miR-195 and miR-497 expression, regulation and role in breast cancer. Clin Cancer Res. 17:1722–1730. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wei C, Luo Q, Sun X, Li D, Song H, Li X, Song J, Hua K and Fang L: MicroRNA-497 induces cell apoptosis by negatively regulating Bcl-2 protein expression at the posttranscriptional level in human breast cancer. Int J Clin Exp Pathol. 8:7729–7739. 2015.PubMed/NCBI | |
Creevey L, Ryan J, Harvey H, Bray IM, Meehan M, Khan AR and Stallings RL: MicroRNA-497 increases apoptosis in MYCN amplified neuroblastoma cells by targeting the key cell cycle regulator WEE1. Mol Cancer. 12:232013. View Article : Google Scholar : PubMed/NCBI | |
Zhao WY, Wang Y, An ZJ, Shi CG, Zhu GA, Wang B, Lu MY, Pan CK and Chen P: Downregulation of miR-497 promotes tumor growth and angiogenesis by targeting HDGF in non-small cell lung cancer. Biochem Biophys Res Commun. 435:466–471. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yin Q, Han Y, Zhu D, Li Z, Shan S, Jin W, Lu Q and Ren T: miR-145 and miR-497 suppress TGF-β-induced epithelial-mesenchymal transition of non-small cell lung cancer by targeting MTDH. Cancer Cell Int. 18:1052018. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Wang L, Liu W and Li F: MicroRNA-497-5p inhibits proliferation and invasion of non-small cell lung cancer by regulating FGF2. Oncol Lett. 17:3425–3431. 2019.PubMed/NCBI | |
Li W, Jin X, Deng X, Zhang G, Zhang B and Ma L: The putative tumor suppressor microRNA-497 modulates gastric cancer cell proliferation and invasion by repressing eIF4E. Biochem Biophys Res Commun. 449:235–240. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xie G, Ke Q, Ji YZ, Wang AQ, Jing M and Zou LL: FGFR1 is an independent prognostic factor and can be regulated by miR-497 in gastric cancer progression. Braz J Med Biol Res. 52:e78162018. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Cheng K, Zang R, Wang Q and Wang J: miR-497-5p inhibits gastric cancer cell proliferation and growth through targeting PDK3. Biosci Rep. 39:BSR201906542019. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Ren F, Wu Q, Jiang D, Li H, Peng Z, Wang J and Shi H: MicroRNA-497 inhibition of ovarian cancer cell migration and invasion through targeting of SMAD specific E3 ubiquitin protein ligase 1. Biochem Biophys Res Commun. 449:432–437. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Mo Y, Midorikawa K, Zhang Z, Huang G, Ma N, Zhao W, Hiraku Y, Oikawa S and Murata M: The potent tumor suppressor miR-497 inhibits cancer phenotypes in nasopharyngeal carcinoma by targeting ANLN and HSPA4L. Oncotarget. 6:35893–35907. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ruan WD, Wang P, Feng S, Xue Y and Zhang B: MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells. Onco Targets Ther. 9:303–313. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Li A, Yu Z, Li X, Guo X and Chen R: MicroRNA-497-5p suppresses tumor cell growth of osteosarcoma by targeting ADP ribosylation factor-like protein 2. Cancer Biother Radiopharm. 32:371–378. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Kuang D, Zhao X, Chen D, Wang X, Yang Q, Wan J, Zhu Y, Wang Y, Zhang S, et al: miR-497-5p inhibits cell proliferation and invasion by targeting KCa3.1 in angiosarcoma. Oncotarget. 7:58148–58161. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Wu XL, Wu KH, Zhang R, Ju LL, Ji Y, Zhang YW, Xue SL, Zhang YX, Yang YF, et al: MicroRNA-497 regulates cisplatin chemosensitivity of cervical cancer by targeting transketolase. Am J Cancer Res. 6:2690–2699. 2016.PubMed/NCBI | |
Chen Y, Du J, Wang Y, Shi H, Jiang Q, Wang' Y, Zhang H, Wei Y, Xue W, Pu Z, et al: MicroRNA-497-5p induces cell cycle arrest of cervical cancer cells in s phase by targeting CBX4. Onco Targets Ther. 12:10535–10545. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Meng X, Huang Y, Lv Z, Liu J, Wang G, Meng W, Xue S, Zhang Q, Zhang P, et al: MicroRNA-497 inhibits thyroid cancer tumor growth and invasion by suppressing BDNF. Oncotarget. 8:2825–2834. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhuang J, Ye Y, Wang G, Ni J, He S, Hu C, Xia W and Lv Z: MicroRNA-497 inhibits cellular proliferation, migration and invasion of papillary thyroid cancer by directly targeting AKT3. Mol Med Rep. 16:5815–5822. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mizrahi A, Barzilai A, Gur-Wahnon D, Ben-Dov IZ, Glassberg S, Meningher T, Elharar E, Masalha M, Jacob-Hirsch J, Tabibian-Keissar H, et al: Alterations of microRNAs throughout the malignant evolution of cutaneous squamous cell carcinoma: The role of miR-497 in epithelial to mesenchymal transition of keratinocytes. Oncogene. 37:218–230. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wei XH, Gu XL, Zhou XT, Ma M and Lou CX: miR-497 promotes the progression of cutaneous squamous cell carcinoma through FAM114A2. Eur Rev Med Pharmacol Sci. 22:7348–7355. 2018.PubMed/NCBI | |
Chai L, Kang XJ, Sun ZZ, Zeng MF, Yu SR, Ding Y, Liang JQ, Li TT and Zhao J: miR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by targeting hTERT in melanoma A375 cells. Cancer Manag Res. 10:989–1003. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lu F, Ye Y, Zhang H, He X, Sun X, Yao C, Mao H, He X, Qian C, Wang B, et al: miR-497/Wnt3a/c-jun feedback loop regulates growth and epithelial-to-mesenchymal transition phenotype in glioma cells. Int J Biol Macromol. 120:985–991. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qu F, Ye J, Pan X, Wang J, Gan S, Chu C, Chu J, Zhang X, Liu M, He H and Cui X: MicroRNA-497-5p down-regulation increases PD-L1 expression in clear cell renal cell carcinoma. J Drug Target. 27:67–74. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hoareau-Aveilla C, Quelen C, Congras A, Caillet N, Labourdette D, Dozier C, Brousset P, Lamant L and Meggetto F: miR-497 suppresses cycle progression through an axis involving CDK6 in ALK-positive cells. Haematologica. 104:347–359. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Li K, Lin X, Yao Z, Wang S, Xiong X, Ning Z, Wang J, Xu X, Jiang Y, et al: Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 450:22–31. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhu Z, Huang S, Zhao Q, Huang C, Tang Y, Sun C, Zhang Z, Wang L, Chen H, et al: lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCD4. Cancer Cell Int. 19:1982019. View Article : Google Scholar : PubMed/NCBI | |
Maura F, Cutrona G, Mosca L, Matis S, Lionetti M, Fabris S, Agnelli L, Colombo M, Massucco C, Ferracin M, et al: Association between gene and miRNA expression profiles and stereotyped subset #4 B-cell receptor in chronic lymphocytic leukemia. Leuk Lymphoma. 56:3150–3158. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wald AI, Hoskins EE, Wells SI, Ferris RL and Khan SA: Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck. 33:504–512. 2011. View Article : Google Scholar : PubMed/NCBI | |
Matsuyama H and Suzuki HI: Systems and synthetic microRNA biology: From biogenesis to disease pathogenesis. Int J Mol Sci. 21:1322019. View Article : Google Scholar | |
Daura-Oller E, Cabre M, Montero MA, Paternain JL and Romeu A: Specific gene hypomethylation and cancer: New insights into coding region feature trends. Bioinformation. 3:340–343. 2009. View Article : Google Scholar : PubMed/NCBI | |
Esteller M: Relevance of DNA methylation in the management of cancer. Lancet Oncol. 4:351–358. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z and Shen F: Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int Mol Sci. 20:55732019. View Article : Google Scholar | |
Loda A and Heard E: Xist RNA in action: Past, present, and future. PLoS Genet. 15:e10083332019. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Jiang X, Jiang X and Zhao H: X-inactive-specific transcript: A long noncoding RNA with complex roles in human cancers. Gene. 679:28–35. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Zhou Y, Luo X, Gao H, Deng X and Jiang Y: Long non-coding RNA XIST promotes cell growth and invasion through regulating miR-497/MACC1 axis in gastric cancer. Oncotarget. 8:4125–4135. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li M, Tang X, Fu Y, Wang T and Zhu J: Regulatory mechanisms and clinical applications of the long non-coding RNA PVT1 in cancer treatment. Front Oncol. 9:7872019. View Article : Google Scholar : PubMed/NCBI | |
Song J, Wu X, Liu F, Li M, Sun Y, Wang Y, Wang C, Zhu K, Jia X, Wang B and Ma X: Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma. Biochem Biophys Res Commun. 490:217–2124. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo D, Wang Y, Ren K and Han X: Knockdown of LncRNA PVT1 inhibits tumorigenesis in non-small-cell lung cancer by regulating miR-497 expression. Exp Cell Res. 362:172–179. 2018. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Zhu Y, Zhang Y and Rao M: LncRNA GACAT3 promotes gastric cancer progression by negatively regulating miR-497 expression. Biomed Pharmacother. 97:136–142. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhong H, Yang J, Zhang B, Wang X, Pei L, Zhang L, Lin Z, Wang Y and Wang C: LncRNA GACAT3 predicts poor prognosis and promotes cell proliferation in breast cancer through regulation of miR-497/CCND2. Cancer Biomark. 22:787–797. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xia T, Chen J, Wu K, Zhang J and Yan Q: Long noncoding RNA NEAT1 promotes the growth of gastric cancer cells by regulating miR-497-5p/PIK3R1 axis. Eur Rev Med Pharmacol Sci. 23:6914–6926. 2019.PubMed/NCBI | |
Sun Z, Guo X, Zang M, Wang P, Xue S and Chen G: Long non-coding RNA LINC00152 promotes cell growth and invasion of papillary thyroid carcinoma by regulating the miR-497/BDNF axis. J Cell Physiol. 234:1336–1345. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Xu Z, Zhang X, Men L and Nie H: Long intergenic non-protein coding RNA 152 promotes multiple myeloma progression by negatively regulating microRNA-497. Oncol Rep. 40:3763–3771. 2018.PubMed/NCBI | |
Xu D, Chen Y, Yuan C, Zhang S and Peng W: Long non-coding RNA LINC00662 promotes proliferation and migration in oral squamous cell carcinoma. Onco Targets Ther. 12:647–656. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Yao Y, Huang S, Li L, Jiang B, Guo H, Lei W, Xiong J and Deng J: LINC00662 promotes gastric cancer cell growth by modulating the Hippo-YAP1 pathway. Biochem Bioph Res Commun. 505:843–859. 2018. View Article : Google Scholar | |
Xu X, Gu J, Ding X, Ge G, Zang X, Ji R, Shao M, Mao Z, Zhang Y, Zhang J, et al: LINC00978 promotes the progression of hepatocellular carcinoma by regulating EZH2-mediated silencing of p21 and E-cadherin expression. Cell Death Dis. 10:7522019. View Article : Google Scholar : PubMed/NCBI | |
Bu J, Lv W, Liao Y, Xiao X and Lv B: Long non-coding RNA LINC00978 promotes cell proliferation and tumorigenesis via regulating microRNA-497/NTRK3 axis in gastric cancer. Int J Biol Macromol. 123:1106–1114. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dong B, Chen X, Zhang Y, Zhu C and Dong Q: The prognostic value of lncRNA SNHG1 in cancer patients: A meta-analysis. BMC Cancer. 19:7802019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Lu Q, Zhu D, Han Y, Zhou X and Ren T: Lnc-SNHG1 may promote the progression of non-small cell lung cancer by acting as a sponge of miR-497. Biochem Bioph Res Commun. 506:632–640. 2018. View Article : Google Scholar | |
Bai J, Xu J, Zhao J and Zhang R: lncRNA SNHG1 cooperated with miR-497/miR-195-5p to modify epithelial-mesenchymal transition underlying colorectal cancer exacerbation. J Cell Physiol. 235:1453–1468. 2020. View Article : Google Scholar : PubMed/NCBI | |
Christensen LL, True K, Hamilton MP, Nielsen MM, Damas ND, Damgaard CK, Ongen H, Dermitzakis E, Bramsen JB, Pedersen JS, et al: SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol Oncol. 10:1266–1282. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wen Q, Zhao L, Wang T, Lv N, Cheng X, Zhang G and Bai L: LncRNA SNHG16 drives proliferation and invasion of papillary thyroid cancer through modulation of miR-497. Onco Targets Ther. 12:699–708. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu Q, Li Y, Guo Y, Hu L, Xiao Z, Liu X, Wang J, Xu Q and Tong X: Long non-coding RNA SNHG16 promotes proliferation and inhibits apoptosis of diffuse large B-cell lymphoma cells by targeting miR-497-5p/PIM1 axis. J Cell Mol Med. 23:7395–7405. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Wang Z, Liu D and Xie P: HOXC13-AS-miR-122-5p-SATB1-C-Myc feedback loop promotes migration, invasion and EMT process in glioma. Onco Targets Ther. 12:7165–7173. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang Q, Rui Y, Zhang C, Wang W, Gu J, Tang J and Ding Y: HOXC13-AS promotes breast cancer cell growth through regulating miR-497-5p/PTEN axis. J Cell Physiol. 234:22343–22351. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang Y, Li X, Xia X, Li N, He R, He H, Han C and Zhao W: ZBTB7A Enhances Osteosarcoma Chemoresistance by Transcriptionally Repressing lncRNALINC00473-IL24 Activity. Neoplasia. 19:908–918. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bai J, Zhao W, Li W, Ying Z and Jiang D: Long noncoding RNA LINC00473 indicates a poor prognosis of breast cancer and accelerates tumor carcinogenesis by competing endogenous sponging miR-497. Eur Rev Med Pharmaco. 23:3410–3420. 2019. | |
He Z: LINC00473/miR-497-5p regulates esophageal squamous cell carcinoma progression through targeting PRKAA1. Cancer Biother Radiopharm. 34:650–659. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhu Q, Zhang H, Hu Y, Wang G and Zhu Y: MALAT1: A potential biomarker in cancer. Cancer Manag Res. 10:6757–6768. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hassan N, Zhao J, Glover A, Robinson BG and Sidhu SB: Reciprocal interplay of miR-497 and MALAT1 promotes tumourigenesis of adrenocortical cancer. Endocr Relat Cancer. 26:677–688. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao P, Guan H, Dai Z, Ma Y, Zhao Y and Liu D: Long noncoding RNA DLX6-AS1 promotes breast cancer progression via miR-505-3p/RUNX2 axis. Eur J Pharmacol. 865:1727782019. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Ye Z, Mei D, Gu H and Zhang J: Long noncoding RNA DLX6-AS1 promotes tumorigenesis by modulating miR-497-5p/FZD4/FZD6/Wnt/β-catenin pathway in pancreatic cancer. Cancer Manag Res. 11:4209–4221. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Hao S, Yang L, Xie J, Chen S and Gu G: LINC00339 promotes cell proliferation and metastasis in pancreatic cancer via miR-497-5p/IGF1R axis. J BUON. 24:729–738. 2019.PubMed/NCBI | |
Zhang J, Chen Z, Chen D, Tian X, Wang C, Zhou Z, Gao Y, Xu Y, Chen C, Zheng Z, et al: LINC01410-miR-532-NCF2-NF-kB feedback loop promotes gastric cancer angiogenesis and metastasis. Oncogene. 37:2660–2675. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cai M, Xu L, Shen L and Zhang J: The expression of long non-coding RNA-LINC01410 in pancreatic cancer and its effect on proliferation and migration of pancreatic cancer cells. Zhonghua Yi Xue Za Zhi. 99:1406–1411. 2019.(In Chinese). PubMed/NCBI | |
Yu C and Zhang F: LncRNA AC009022.1 enhances colorectal cancer cells proliferation, migration, and invasion by promoting ACTR3B expression via suppressing miR-497-5p. J Cell Biochem. 121:1934–1944. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Yu T, Shang J, Xiao D and Wang X: Long Non-Coding RNA CDKN2B-AS1 facilitates laryngeal squamous cell cancer through regulating miR-497/CDK6 Pathway. Onco Targets Ther. 12:8853–8862. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Long J, He Q, Li Y, Liao Y, He P and Zhu W: Emerging roles of circRNA in formation and progression of cancer. J Cancer. 10:5015–5021. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Zhang M, Xu B, Han L, Lan S, Chen J, Dong Y and Cao L: Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis. Oncotarget. 8:86625–86633. 2017. View Article : Google Scholar : PubMed/NCBI | |
Adhikary J, Chakraborty S, Dalal S, Basu S, Dey A and Ghosh A: Circular PVT1: An oncogenic non-coding RNA with emerging clinical importance. J Clin Pathol. 72:513–519. 2019. View Article : Google Scholar : PubMed/NCBI | |
Verduci L, Ferraiuolo M, Sacconi A, Ganci F, Vitale J, Colombo T, Paci P, Strano S, Macino G, Rajewsky N and Blandino G: The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biol. 18:2372017. View Article : Google Scholar : PubMed/NCBI | |
Qin S, Zhao Y, Lim G, Lin H and Zhang X and Zhang X: Circular RNA PVT1 acts as a competing endogenous RNA for miR-497 in promoting non-small cell lung cancer progression. Biomed Pharmacother. 111:244–250. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mechtler P, Singhal R, Kichina JV, Bard JE, Buck MJ and Kandel ES: MicroRNA analysis suggests an additional level of feedback regulation in the NF-κB signaling cascade. Oncotarget. 6:17097–17106. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kong X, Duan L, Qian X, Xu D, Liu H, Zhu Y and Qi J: Tumor-suppressive microRNA-497 targets IKKβ to regulate NF-κB signaling pathway in human prostate cancer cells. Am J Cancer Res. 5:1795–1804. 2015.PubMed/NCBI | |
Zhao B, Wang Y, Tan X, Ke K, Zheng X, Wang F, Lan S, Liao N, Cai Z, Shi Y, et al: Inflammatory Micro-environment contributes to stemness properties and metastatic potential of HCC via the NF-κB/miR-497/SALL4 Axis. Mol Ther Oncolytics. 15:79–90. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Ma R, Yue J, Li N, Li Z and Qi D: miR-497 Suppresses YAP1 and Inhibits Tumor Growth in Non-Small Cell Lung Cancer. Cell Physiol Biochem. 37:342–352. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yu Z, Xian Y and Lin X: microRNA-497 inhibits cell proliferation and induces apoptosis by targeting YAP1 in human hepatocellular carcinoma. FEBS Open Bio. 6:155–164. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Dong H, Feng J, Tian H, Zhang H and Xu L: miR-497 inhibited proliferation, migration and invasion of thyroid papillary carcinoma cells by negatively regulating YAP1 expression. Onco Targets Ther. 11:4711–4721. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Li X, Cai X, Huang C and Zheng M: miR-497 inhibits epithelial mesenchymal transition in breast carcinoma by targeting Slug. Tumour Biol. 37:7939–7950. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin D and Wu J: Hypoxia inducible factor in hepatocellular carcinoma: A therapeutic target. World J Gastroenterol. 21:12171–12178. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lan J, Xue Y, Chen H, Zhao S, Wu Z, Fang J, Han C and Lou M: Hypoxia-induced miR-497 decreases glioma cell sensitivity to TMZ by inhibiting apoptosis. FEBS Lett. 588:3333–3339. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Cai X, Huang C, Xu J and Liu A: miR-497 suppresses angiogenesis in breast carcinoma by targeting HIF-1α. Oncol Rep. 35:1696–1702. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qiao W, Jia Z, Liu H, Liu Q, Zhang T, Guo W, Li P, Deng M and Li S: Prognostic and clinicopathological value of Twist expression in breast cancer: A meta-analysis. PLoS One. 12:e1861912017. View Article : Google Scholar | |
Liu A, Huang C, Cai X, Xu J and Yang D: Twist promotes angiogenesis in pancreatic cancer by targeting miR-497/VEGFA axis. Oncotarget. 7:25801–25814. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gu YY, Liu XS, Huang XR, Yu XQ and Lan HY: Diverse role of TGF-β in kidney disease. Front Cell Dev Biol. 8:1232020. View Article : Google Scholar : PubMed/NCBI | |
Jafarzadeh M, Soltani BM, Dokanehiifard S, Kay M, Aghdami N and Hosseinkhani S: Experimental evidences for hsa-miR-497-5p as a negative regulator of SMAD3 gene expression. Gene. 586:216–221. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhou Y, Shi Z, Hu Y, Meng T, Zhang X, Zhang S and Zhang J: microRNA-497 modulates breast cancer cell proliferation, invasion, and survival by targeting SMAD7. DNA Cell Biol. 35:521–529. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Xu J and Ge W: miR-497 enhances metastasis of oral squamous cell carcinoma through SMAD7 suppression. Am J Transl Res. 8:3023–3031. 2016.PubMed/NCBI | |
Al-Hujaily EM, Tang Y, Yao DS, Carmona E, Garson K and Vanderhyden BC: Divergent roles of PAX2 in the etiology and progression of ovarian cancer. Cancer Prev Res (Phila). 8:1163–1173. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Zhao J, Wang X, Zhu X and Gong L: Overexpression of microRNA-497 suppresses cell proliferation and induces apoptosis through targeting paired box 2 in human ovarian cancer. Oncol Rep. 36:2101–2107. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang Z, Li Z, Gong D, Zhan B, Man X and Kong C: MicroRNA-497 inhibits the proliferation, migration and invasion of human bladder transitional cell carcinoma cells by targeting E2F3. Oncol Rep. 36:1293–1300. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han H, Du Y, Zhao W, Li S, Chen D, Zhang J, Liu J, Suo Z, Bian X, Xing B and Zhang Z: PBX3 is targeted by multiple miRNAs and is essential for liver tumour-initiating cells. Nat Commun. 6:82712015. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Zhang X, Zhang L, Wang Y, Pan H, Xu Z and Pang X: MicroRNA-497 suppresses cell proliferation and induces apoptosis through targeting PBX3 in human multiple myeloma. Am J Cancer Res. 6:2880–2889. 2016.PubMed/NCBI | |
Ma S, Chan YP, Woolcock B, Hu L, Wong KY, Ling MT, Bainbridge T, Webber D, Chan TH, Guan XY, et al: DNA fingerprinting tags novel altered chromosomal regions and identifies the involvement of SOX5 in the progression of prostate cancer. Int J Cancer. 124:2323–2332. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li G, Wang K, Wang J, Qin S, Sun X and Ren H: miR-497-5p inhibits tumor cell growth and invasion by targeting SOX5 in non-small-cell lung cancer. J Cell Biochem. 120:10587–10595. 2019. View Article : Google Scholar : PubMed/NCBI | |
Han L, Liu B, Jiang L, Liu J and Han S: MicroRNA-497 downregulation contributes to cell proliferation, migration, and invasion of estrogen receptor alpha negative breast cancer by targeting estrogen-related receptor alpha. Tumour Biol. 37:13205–13214. 2016. View Article : Google Scholar : PubMed/NCBI | |
Waters PS, McDermott AM, Wall D, Heneghan HM, Miller N, Newell J, Kerin MJ and Dwyer RM: Relationship between circulating and tissue microRNAs in a murine model of breast cancer. PLoS One. 7:e504592012. View Article : Google Scholar : PubMed/NCBI | |
Regazzo G, Terrenato I, Spagnuolo M, Carosi M, Cognetti G, Cicchillitti L, Sperati F, Villani V, Carapella C, Piaggio G, et al: A restricted signature of serum miRNAs distinguishes glioblastoma from lower grade gliomas. J Exp Clin Cancer Res. 35:1242016. View Article : Google Scholar : PubMed/NCBI | |
Murata M: Inflammation and cancer. Environ Health Prev Med. 23:502018. View Article : Google Scholar : PubMed/NCBI | |
Du M, Shi D, Yuan L, Li P, Chu H, Qin C, Yin C, Zhang Z and Wang M: Circulating miR-497 and miR-663b in plasma are potential novel biomarkers for bladder cancer. Sci Rep. 5:104372015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang D, Wang F, Xu D, Guo Y and Cui W: Serum miRNAs panel (miR-16-2*, miR-195, miR-2861, miR-497) as novel non-invasive biomarkers for detection of cervical cancer. Sci Rep. 5:179422015. View Article : Google Scholar : PubMed/NCBI | |
Zou G, Wang R and Wang M: Clinical response and prognostic significance of serum miR-497 expression in colorectal cancer. Cancer Biomark. 25:11–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shao X, Miao M, Xue J, Xue J, Ji X and Zhu H: The Down-regulation of MicroRNA-497 contributes to cell growth and cisplatin resistance through PI3K/Akt pathway in osteosarcoma. Cell Physiol Biochem. 36:2051–2062. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Fu G, Tao Z, OuYang J, Kong F, Jiang B, Wan X and Chen K: miR-497 decreases cisplatin resistance in ovarian cancer cells by targeting mTOR/P70S6K1. Oncotarget. 6:26457–26471. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Wang T, Cao Z, Huang H, Li J, Liu W, Liu S, You L, Zhou L, Zhang T and Zhao Y: miR-497 downregulation contributes to the malignancy of pancreatic cancer and associates with a poor prognosis. Oncotarget. 5:6983–6993. 2014. View Article : Google Scholar : PubMed/NCBI | |
Troppan K, Wenzl K, Pichler M, Pursche B, Schwarzenbacher D, Feichtinger J, Thallinger GG, Beham-Schmid C, Neumeister P and Deutsch A: miR-199a and miR-497 are associated with better overall survival due to increased chemosensitivity in diffuse large B-cell lymphoma patients. Int J Mol Sci. 16:18077–18095. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tian F, Zhan Y, Zhu W, Li J, Tang M, Chen X and Jiang J: MicroRNA-497 inhibits multiple myeloma growth and increases susceptibility to bortezomib by targeting Bcl-2. Int J Mol Med. 43:1058–1066. 2019.PubMed/NCBI | |
Poel D, Boyd LNC, Beekhof R, Schelfhorst T, Pham TV, Piersma SR, Knol JC, Jimenez CR, Verheul HMW and Buffart TE: Proteomic analysis of miR-195 and miR-497 replacement reveals potential candidates that increase sensitivity to oxaliplatin in MSI/P53wt colorectal cancer cells. Cells. 8:11112019. View Article : Google Scholar | |
Ma W, Kang Y, Ning L, Tan J, Wang H and Ying Y: Identification of microRNAs involved in gefitinib resistance of non-small-cell lung cancer through the insulin-like growth factor receptor 1 signaling pathway. Exp Ther Med. 14:2853–2862. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu D, Tu M, Zeng B, Cai L, Zheng W, Su Z and Yu Z: Up-regulation of miR-497 confers resistance to temozolomide in human glioma cells by targeting mTOR/Bcl-2. Cancer Med. 6:452–462. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pang P, Shi X, Huang W and Sun K: miR-497 as a potential serum biomarker for the diagnosis and prognosis of osteosarcoma. Eur Rev Med Pharmacol Sci. 20:3765–3769. 2016.PubMed/NCBI | |
Svedman FC, Lohcharoenkal W, Bottai M, Brage SE, Sonkoly E, Hansson J, Pivarcsi A and Eriksson H: Extracellular microvesicle microRNAs as predictive biomarkers for targeted therapy in metastastic cutaneous malignant melanoma. PLoS One. 13:e2069422018. View Article : Google Scholar | |
Sandhu V, Bowitz Lothe IM, Labori KJ, Lingjærde OC, Buanes T, Dalsgaard AM, Skrede ML, Hamfjord J, Haaland T, Eide TJ, et al: Molecular signatures of mRNAs and miRNAs as prognostic biomarkers in pancreatobiliary and intestinal types of periampullary adenocarcinomas. Mol Oncol. 9:758–771. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wong N, Khwaja SS, Baker CM, Gay HA, Thorstad WL, Daly MD, Lewis JS Jr and Wang X: Prognostic microRNA signatures derived from The Cancer Genome Atlas for head and neck squamous cell carcinomas. Cancer Med. 5:1619–1628. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Gu X, Liu L, Lu M, Ma X, Cao Y, Jiang R, Wang B and Zhao Q: Prognostic role of microRNA-497 in cancer patients: A Meta-analysis. J Cancer. 9:3334–3342. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wu S, Wang L, Kang S, Zhao B, He F, Liu X, Zeng Y and Liu J: Prognostic value of MicroRNA-497 in various cancers: A systematic review and Meta-analysis. Dis Markers. 2019:24912912019. View Article : Google Scholar : PubMed/NCBI | |
Department of Medical Administration, National Health and Health Commission of the People's Republic of China: Guidelines for diagnosis and treatment of primary liver cancer in China (2019 edition). Zhonghua Gan Zang Bing Za Zhi. 28:112–128. 2020.(In Chinese). PubMed/NCBI |