Open Access

Circular RNA hsa_circ_0005114‑miR‑142‑3p/miR‑590‑5p-adenomatous polyposis coli protein axis as a potential target for treatment of glioma

  • Authors:
    • Bo Wei
    • Le Wang
    • Jingwei Zhao
  • View Affiliations

  • Published online on: November 19, 2020     https://doi.org/10.3892/ol.2020.12320
  • Article Number: 58
  • Copyright: © Wei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glioma is the most common type of brain tumor and is associated with a high mortality rate. Despite recent advances in treatment options, the overall prognosis in patients with glioma remains poor. Studies have suggested that circular (circ)RNAs serve important roles in the development and progression of glioma and may have potential as therapeutic targets. However, the expression profiles of circRNAs and their functions in glioma have rarely been studied. The present study aimed to screen differentially expressed circRNAs (DECs) between glioma and normal brain tissues using sequencing data collected from the Gene Expression Omnibus database (GSE86202 and GSE92322 datasets) and explain their mechanisms based on the competing endogenous (ce)RNA regulatory hypothesis. In total, 424 commonly downregulated DECs (with the Gene_symbol annotated in the circBase database) in these two datasets were identified. Using the CircInteractome and Starbase databases, 18 micro (mi)RNAs (miRs) were predicted to interact with DECs, while 22 glioma‑related genes obtained from the Comparative Toxicogenomics Database were predicted to be regulated by 15 miRNAs via the miRwalk 2.0 database. A ceRNA network was established based on 115 DECs, 15 miRNAs and 22 mRNAs. LinkedOmics online analysis using The Cancer Genome Atlas (TCGA) data showed that hsa-miR-142-3p/hsa‑miR‑590‑5p and their target gene adenomatous polyposis coli protein (APC) were all significantly associated with overall survival rate and their prognosis trend was opposite, revealing that high expression levels of hsa‑miR‑142‑3p/hsa‑miR‑590‑5 were associated with a poor overall survival rate, while high APC expression with a good overall survival rate. UALCAN analysis using TCGA data of glioblastoma multiforme and the GSE25632 and GSE103229 microarray datasets showed that hsa‑miR‑142‑3p/hsa‑miR‑590‑5p was upregulated and APC was downregulated. Thus, hsa-miR-142-3p/hsa-miR-590-5p-APC-related circ/ceRNA axes may be important in glioma, and hsa_circ_0005114 interacted with both of these miRNAs. Functional analysis showed that hsa_circ_0005114 was involved in insulin secretion, while APC was associated with the Wnt signaling pathway. In conclusion, hsa_circ_0005114-miR-142-3p/miR-590-5p‑APC ceRNA axes may be potential targets for the treatment of glioma.
View Figures
View References

Related Articles

Journal Cover

January-2021
Volume 21 Issue 1

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Wei B, Wang L and Zhao J: Circular RNA hsa_circ_0005114‑miR‑142‑3p/miR‑590‑5p-adenomatous polyposis coli protein axis as a potential target for treatment of glioma. Oncol Lett 21: 58, 2021.
APA
Wei, B., Wang, L., & Zhao, J. (2021). Circular RNA hsa_circ_0005114‑miR‑142‑3p/miR‑590‑5p-adenomatous polyposis coli protein axis as a potential target for treatment of glioma. Oncology Letters, 21, 58. https://doi.org/10.3892/ol.2020.12320
MLA
Wei, B., Wang, L., Zhao, J."Circular RNA hsa_circ_0005114‑miR‑142‑3p/miR‑590‑5p-adenomatous polyposis coli protein axis as a potential target for treatment of glioma". Oncology Letters 21.1 (2021): 58.
Chicago
Wei, B., Wang, L., Zhao, J."Circular RNA hsa_circ_0005114‑miR‑142‑3p/miR‑590‑5p-adenomatous polyposis coli protein axis as a potential target for treatment of glioma". Oncology Letters 21, no. 1 (2021): 58. https://doi.org/10.3892/ol.2020.12320