1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hofseth LJ, Hebert JR, Chanda A, Chen H,
Love BL, Pena MM, Murphy EA, Sajish M, Sheth A, Buckhaults PJ and
Berger FG: Early-onset colorectal cancer: Initial clues and current
views. Nat Rev Gastroenterol Hepatol. 17:352–364. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Grady WM and Carethers JM: Genomic and
epigenetic instability in colorectal cancer pathogenesis.
Gastroenterology. 135:1079–1099. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rubinfeld B, Souza B, Albert I, Müller O,
Chamberlain SH, Masiarz FR, Munemitsu S and Polakis P: Association
of the APC gene product with beta-catenin. Science. 262:1731–1734.
1993. View Article : Google Scholar : PubMed/NCBI
|
5
|
Powell SM, Zilz N, Beazer-Barclay Y, Bryan
TM, Hamilton SR, Thibodeau SN, Vogelstein B and Kinzler KW: APC
mutations occur early during colorectal tumorigenesis. Nature.
359:235–237. 1992. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Roose J and Clevers H: TCF transcription
factors: Molecular switches in carcinogenesis. Biochim Biophys
Acta. 1424:M23–M37. 1999.PubMed/NCBI
|
7
|
Stamos JL and Weis WI: The β-catenin
destruction complex. Cold Spring Harb Perspect Biol. 5:a0078982013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Moser AR, Luongo C, Gould KA, McNeley MK,
Shoemaker AR and Dove WF: ApcMin: A mouse model for intestinal and
mammary tumorigenesis. Eur J Cancer. 31A:1061–1064. 1995.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Corpet DE and Pierre F: Point: From animal
models to prevention of colon cancer. Systematic review of
chemoprevention in min mice and choice of the mod'el system. Cancer
Epidemiol Biomarkers Prev. 12:391–400. 2003.PubMed/NCBI
|
10
|
Aune D, Giovannucci E, Boffetta P, Fadnes
LT, Keum N, Norat T, Greenwood DC, Riboli E, Vatten LJ and Tonstad
S: Fruit and vegetable intake and the risk of cardiovascular
disease, total cancer and all-cause mortality-a systematic review
and dose-response meta-analysis of prospective studies. Int J
Epidemiol. 46:1029–1056. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Luo WP, Fang YJ, Lu MS, Zhong X, Then YM
and Zhang CX: High consumption of vegetable and fruit colour groups
is inversely associated with the risk of colorectal cancer: A
case-control study. Br J Nutr. 113:1129–1138. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
O'Keefe SJ: Diet, microorganisms and their
metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol.
13:691–706. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang K, Lamprecht SA, Liu Y, Shinozaki H,
Fan K, Leung D, Newmark H, Steele VE, Kelloff GJ and Lipkin M:
Chemoprevention studies of the flavonoids quercetin and rutin in
normal and azoxymethane-treated mouse colon. Carcinogenesis.
21:1655–1660. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Du WJ, Yang XL, Song ZJ, Wang JY, Zhang
WJ, He X, Zhang RQ, Zhang CF, Li F, Yu CH, et al: Antitumor
Activity of total flavonoids from daphne genkwa in colorectal
cancer. Phytother Res. 30:323–330. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chang H, Lei L, Zhou Y, Ye F and Zhao G:
Dietary flavonoids and the risk of colorectal cancer: An updated
Meta-analysis of epidemiological studies. Nutrients. 10:9502018.
View Article : Google Scholar
|
16
|
Cho YA, Lee J, Oh JH, Chang HJ, Sohn DK,
Shin A and Kim J: Dietary flavonoids, CYP1A1 genetic variants, and
the risk of colorectal cancer in a korean population. Sci Rep.
7:1282017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zamora-Ros R, Not C, Guinó E,
Luján-Barroso L, García RM, Biondo S, Salazar R and Moreno V:
Association between habitual dietary flavonoid and lignan intake
and colorectal cancer in a Spanish case-control study (the
Bellvitge Colorectal Cancer Study). Cancer Causes Control.
24:549–557. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hsieh CT, Hsieh TJ, El-Shazly M, Chuang
DW, Tsai YH, Yen CT, Wu SF, Wu YC and Chang F: Synthesis of
chalcone derivatives as potential anti-diabetic agents. Bioorg Med
Chem Lett. 22:3912–3915. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mirossay L, Varinska L and Mojzis J:
Antiangiogenic effect of flavonoids and chalcones: An update. Int J
Mol Sci. 19:272017. View Article : Google Scholar
|
20
|
Fernandes I, Pérez-Gregorio R, Soares S,
Mateus N and de Freitas V: Wine flavonoids in health and disease
prevention. Molecules. 22:2922017. View Article : Google Scholar
|
21
|
Kar Mahapatra D, Asati V and Bharti SK: An
updated patent review of therapeutic applications of chalcone
derivatives (2014-present). Expert Opin Ther Pat. 29:385–406. 2019.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Mahapatra DK, Bharti SK and Asati V:
Anti-cancer chalcones: Structural and molecular target
perspectives. Eur J Med Chem. 98:69–114. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Karthikeyan C, Moorthy NS, Ramasamy S,
Vanam U, Manivannan E, Karunagaran D and Trivedi P: Advances in
chalcones with anticancer activities. Recent Pat Anticancer Drug
Discov. 10:97–115. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim HG, Oh HJ, Ko JH, Song HS, Lee YG,
Kang SC, Lee DY and Baek NI: Lanceoleins A-G, hydroxychalcones,
from the flowers of Coreopsis lanceolata and their chemopreventive
effects against human colon cancer cells. Bioorg Chem. 85:274–281.
2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shin S, Son Y, Liu KH, Kang W and Oh S:
Cytotoxic activity of broussochalcone a against colon and liver
cancer cells by promoting destruction complex-independent β-catenin
degradation. Food Chem Toxicol. 131:1105502019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kello M, Drutovic D, Pilatova MB,
Tischlerova V, Perjesi P and Mojzis J: Chalcone derivatives cause
accumulation of colon cancer cells in the G2/M phase and induce
apoptosis. Life Sci. 150:32–38. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Loa J, Chow P and Zhang K: Studies of
structure-activity relationship on plant polyphenol-induced
suppression of human liver cancer cells. Cancer Chemother
Pharmacol. 63:1007–1016. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Qu Q, Dai B, Yang B, Li X, Liu Y and Zhang
F: 4-Hydroxychalcone attenuates hyperaldosteronism, inflammation,
and renal injury in cryptochrome-null mice. Biomed Res Int.
2014:6034152014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Schindelin J, Arganda-Carreras I, Frise E,
Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, et al: Fiji: An open-source platform for biological-image
analysis. Nat Methods. 9:676–682. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Polakis P, Hart M and Rubinfeld B: Defects
in the regulation of beta-catenin in colorectal cancer. Adv Exp Med
Biol. 470:23–32. 1999. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fonseca BF, Predes D, Cerqueira DM, Reis
AH, Amado NG, Cayres MC, Kuster RM, Oliveira FL, Mendes FA and
Abreu JG: Derricin and derricidin inhibit Wnt/β-catenin signaling
and suppress colon cancer cell growth in vitro. PLoS One.
10:e01209192015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hou G, Yuan X, Li Y, Hou G and Liu X:
Cardamonin, a natural chalcone, reduces 5-fluorouracil resistance
of gastric cancer cells through targeting Wnt/β-catenin signal
pathway. Invest New Drugs. 38:329–339. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Predes D, Oliveira LFS, Ferreira LSS, Maia
LA, Delou JMA, Faletti A, Oliveira I, Amado NG, Reis AH, Fraga CAM,
et al: The chalcone lonchocarpin inhibits wnt/beta-catenin
signaling and suppresses colorectal cancer proliferation. Cancers
(Basel). 11:19682019. View Article : Google Scholar
|
35
|
Yin L, Niu C, Liao LX, Dou J, Habasi M and
Aisa HA: An isoxazole chalcone derivative enhances melanogenesis in
B16 melanoma cells via the Akt/GSK3β/β-catenin signaling pathways.
Molecules. 22:20772017. View Article : Google Scholar
|
36
|
Brenner H, Kloor M and Pox CP: Colorectal
cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kawamori T, Lubet R, Steele VE, Kelloff
GJ, Kaskey RB, Rao CV and Reddy BS: Chemopreventive effect of
curcumin, a naturally occurring anti-inflammatory agent, during the
promotion/progression stages of colon cancer. Cancer Res.
59:597–601. 1999.PubMed/NCBI
|
38
|
Charepalli V, Reddivari L, Vadde R, Walia
S, Radhakrishnan S and Vanamala JK: Eugenia jambolana (Java Plum)
fruit extract exhibits anti-cancer activity against early stage
human HCT-116 colon cancer cells and colon cancer stem cells.
Cancers (Basel). 8:292016. View Article : Google Scholar
|
39
|
Mazewski C, Liang K and Gonzalez de Mejia
E: Comparison of the effect of chemical composition of
anthocyanin-rich plant extracts on colon cancer cell proliferation
and their potential mechanism of action using in vitro, in silico,
and biochemical assays. Food Chem. 242:378–388. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang W, Heideman L, Chung CS, Pelling JC,
Koehler KJ and Birt DF: Cell-cycle arrest at G2/M and growth
inhibition by apigenin in human colon carcinoma cell lines. Mol
Carcinog. 28:102–110. 2000. View Article : Google Scholar : PubMed/NCBI
|
41
|
Banerjee K and Mandal M: Oxidative stress
triggered by naturally occurring flavone apigenin results in
senescence and chemotherapeutic effect in human colorectal cancer
cells. Redox Biol. 5:153–162. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Xu S, Chen M, Chen W, Hui J, Ji J, Hu S,
Zhou J, Wang Y and Liang G: Chemopreventive effect of chalcone
derivative, L2H17, in colon cancer development. BMC Cancer.
15:8702015. View Article : Google Scholar : PubMed/NCBI
|
43
|
MacDonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kaemmerer E, Jeon MK, Berndt A, Liedtke C
and Gassler N: Targeting wnt signaling via notch in intestinal
carcinogenesis. Cancers (Basel). 11:5552019. View Article : Google Scholar
|
45
|
Krausova M and Korinek V: Wnt signaling in
adult intestinal stem cells and cancer. Cell Signal. 26:570–579.
2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Tetsu O and McCormick F: Beta-catenin
regulates expression of cyclin D1 in colon carcinoma cells. Nature.
398:422–426. 1999. View
Article : Google Scholar : PubMed/NCBI
|
47
|
Wielenga VJ, Smits R, Korinek V, Smit L,
Kielman M, Fodde R, Clevers H and Pals ST: Expression of CD44 in
Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J
Pathol. 154:515–523. 1999. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lin CM, Chen HH, Lin CA, Wu HC, Sheu JJ
and Chen HJ: Apigenin-induced lysosomal degradation of β-catenin in
Wnt/β-catenin signaling. Sci Rep. 7:3722017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Park CH, Chang JY, Hahm ER, Park S, Kim HK
and Yang CH: Quercetin, a potent inhibitor against beta-catenin/Tcf
signaling in SW480 colon cancer cells. Biochem Biophys Res Commun.
328:227–234. 2005. View Article : Google Scholar : PubMed/NCBI
|
50
|
Cassidy A and Minihane AM: The role of
metabolism (and the microbiome) in defining the clinical efficacy
of dietary flavonoids. Am J Clin Nutr. 105:10–22. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Murota K, Nakamura Y and Uehara M:
Flavonoid metabolism: The interaction of metabolites and gut
microbiota. Biosci Biotechnol Biochem. 82:600–610. 2018. View Article : Google Scholar : PubMed/NCBI
|