1
|
Arnold M, Sierra MS, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global patterns and trends in
colorectal cancer incidence and mortality. Gut. 66:683–691. 2017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Fearon ER and Vogelstein B: A genetic
model for colorectal tumorigenesis. Cell. 61:759–767. 1990.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Moon RT, Bowerman B, Boutros M and
Perrimon N: The promise and perils of Wnt signaling through
beta-catenin. Science. 296:1644–1646. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ashton-Rickardt PG, Dunlop MG, Nakamura Y,
Morris RG, Purdie CA, Steel CM, Evans HJ, Bird CC and Wyllie AH:
High frequency of APC loss in sporadic colorectal carcinoma due to
breaks clustered in 5q21-22. Oncogene. 4:1169–1174. 1989.PubMed/NCBI
|
5
|
Nishisho I, Nakamura Y, Miyoshi Y, Miki Y,
Ando H, Horii A, Koyama K, Utsunomiya J, Baba S and Hedge P:
Mutations of chromosome 5q21 genes in FAP and colorectal cancer
patients. Science. 253:665–669. 1991. View Article : Google Scholar : PubMed/NCBI
|
6
|
Moser AR, Pitot HC and Dove WF: A dominant
mutation that predisposes to multiple intestinal neoplasia in the
mouse. Science. 247:322–324. 1990. View Article : Google Scholar : PubMed/NCBI
|
7
|
Coletta PL, Müller AM, Jones EA, Mühl B,
Holwell S, Clarke D, Meade JL, Cook GP, Hawcroft G, Ponchel F, et
al: Lymphodepletion in the ApcMin/+ mouse model of
intestinal tumorigenesis. Blood. 103:1050–1058. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lane SW, Sykes SM, Al-Shahrour F,
Shterental S, Paktinat M, Lo Celso C, Jesneck JL, Ebert BL,
Williams DA and Gilliland DG: The Apc(min) mouse has altered
hematopoietic stem cell function and provides a model for MPD/MDS.
Blood. 115:3489–3497. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang J, Fernald AA, Anastasi J, Le Beau MM
and Qian Z: Haploinsufficiency of Apc leads to ineffective
hematopoiesis. Blood. 115:3481–3488. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD,
Sosman JA, Atkins MB, et al: Safety, activity, and immune
correlates of anti-PD-1 antibody in cancer. N Engl J Med.
366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Marabelle A, Le DT, Ascierto PA, Di
Giacomo AM, De Jesus-Acosta A, Delord JP, Geva R, Gottfried M,
Penel N, Hansen AR, et al: Efficacy of pembrolizumab in patients
with noncolorectal high microsatellite instability/mismatch
repair-deficient cancer: Results from the phase II KEYNOTE-158
study. J Clin Oncol. 38:1–10. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Overman MJ, Lonardi S, Wong KYM, Lenz HJ,
Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill
A, et al: Durable clinical benefit with nivolumab plus ipilimumab
in DNA mismatch repair-deficient/microsatellite instability-high
metastatic colorectal cancer. J Clin Oncol. 36:773–779. 2018.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Toh JWT, de Souza P, Lim SH, Singh P, Chua
W, Ng W and Spring KJ: The potential value of immunotherapy in
colorectal cancers: Review of the evidence for programmed death-1
inhibitor therapy. Clin Colorectal Cancer. 15:285–291. 2016.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Schumacher TN and Schreiber RD:
Neoantigens in cancer immunotherapy. Science. 348:69–74. 2015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Tumeh PC, Harview CL, Yearley JH, Shintaku
IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu
V, et al: PD-1 blockade induces responses by inhibiting adaptive
immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Spranger S, Bao R and Gajewski TF:
Melanoma-intrinsic β-catenin signalling prevents anti-tumour
immunity. Nature. 523:231–235. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bain CC and Mowat AM: Macrophages in
intestinal homeostasis and inflammation. Immunol Rev. 260:102–117.
2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Faust N, Varas F, Kelly LM, Heck S and
Graf T: Insertion of enhanced green fluorescent protein into the
lysozyme gene creates mice with green fluorescent granulocytes and
macrophages. Blood. 96:719–726. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dietrich WF, Lander ES, Smith JS, Moser
AR, Gould KA, Luongo C, Borenstein N and Dove W: Genetic
identification of Mom-1, a major modifier locus affecting
Min-induced intestinal neoplasia in the mouse. Cell. 75:631–639.
1993. View Article : Google Scholar : PubMed/NCBI
|
20
|
Smith PG, Coletta PL, Markham AF and
Whitehouse A: In vivo episomal maintenance of a herpesvirus
saimiri-based gene delivery vector. Gene Ther. 8:1762–1769. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Walter I, Fleischmann M, Klein D, Müller
M, Salmons B, Günzburg WH, Renner M and Gelbmann W: Rapid and
sensitive detection of enhanced green fluorescent protein
expression in paraffin sections by confocal laser scanning
microscopy. Histochem J. 32:99–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Newberry RD, Stenson WF and Lorenz RG:
Cyclooxygenase-2-dependent arachidonic acid metabolites are
essential modulators of the intestinal immune response to dietary
antigen. Nat Med. 5:900–906. 1999. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Hull MA, Faluyi OO, Ko CW, Holwell S,
Scott DJ, Cuthbert RJ, Poulsom R, Goodlad R, Bonifer C, Markham AF,
et al: Regulation of stromal cell cyclooxygenase-2 in the
ApcMin/+ mouse model of intestinal tumorigenesis.
Carcinogenesis. 27:382–391. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Leenen PJ, de Bruijn MF, Voerman JS,
Campbell PA and van Ewijk W: Markers of mouse macrophage
development detected by monoclonal antibodies. J Immunol Methods.
174:5–19. 1994. View Article : Google Scholar : PubMed/NCBI
|
25
|
Scott DJ, Hull MA, Cartwright EJ, Lam WK,
Tisbury A, Poulsom R, Markham AF, Bonifer C and Coletta PL: Lack of
inducible nitric oxide synthase promotes intestinal tumorigenesis
in the Apc(Min/+) mouse. Gastroenterology. 121:889–899. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Keshav S, Chung P, Milon G and Gordon S:
Lysozyme is an inducible marker of macrophage activation in murine
tissues as demonstrated by in situ hybridization. J Exp Med.
174:1049–1058. 1991. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lelouard H, Fallet M, de Bovis B, Méresse
S and Gorvel JP: Peyer's patch dendritic cells sample antigens by
extending dendrites through M cell-specific transcellular pores.
Gastroenterology. 142:592–601.e3. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Joeris T, Müller-Luda K, Agace WW and
Mowat AM: Diversity and functions of intestinal mononuclear
phagocytes. Mucosal Immunol. 10:845–864. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Emile JF, Julié C, Le Malicot K, Lepage C,
Tabernero J, Mini E, Folprecht G, Van Laethem JL, Dimet S,
Boulagnon-Rombi C, et al PETACC8 Study Investigators; Austrian
Breast and Colorectal cancer Study Group (ABCSG); Belgian Group of
Digestive Oncology (BGDO); John Allen Bridgewater, : Prospective
validation of a lymphocyte infiltration prognostic test in stage
III colon cancer patients treated with adjuvant FOLFOX. Eur J
Cancer. 82:16–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bain CC, Bravo-Blas A, Scott CL,
Perdiguero EG, Geissmann F, Henri S, Malissen B, Osborne LC, Artis
D and Mowat AI: Constant replenishment from circulating monocytes
maintains the macrophage pool in the intestine of adult mice. Nat
Immunol. 15:929–937. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shaw TN, Houston SA, Wemyss K, Bridgeman
HM, Barbera TA, Zangerle-Murray T, Strangward P, Ridley AJL, Wang
P, Tamoutounour S, et al: Tissue-resident macrophages in the
intestine are long lived and defined by Tim-4 and CD4 expression. J
Exp Med. 215:1507–1518. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang D and DuBois RN: The Role of
Prostaglandin E(2) in Tumor-Associated Immunosuppression. Trends
Mol Med. 22:1–3. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Faluyi OO, Fitch P and Howie SE: An
increased CD25-positive intestinal regulatory T lymphocyte
population is dependent upon Cox-2 activity in the
Apcmin/+ model. Clin Exp Immunol. 191:32–41. 2018.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Bain CC, Scott CL, Uronen-Hansson H,
Gudjonsson S, Jansson O, Grip O, Guilliams M, Malissen B, Agace WW
and Mowat AM: Resident and pro-inflammatory macrophages in the
colon represent alternative context-dependent fates of the same
Ly6Chi monocyte precursors. Nat Immunol. 15:929–937. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Zelenay S, van der Veen AG, Böttcher JP,
Snelgrove KJ, Rogers N, Acton SE, Chakravarty P, Girotti MR, Marais
R, Quezada SA, et al: Cyclooxygenase-dependent tumor growth through
evasion of immunity. Cell. 162:1257–1270. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Grainger JR, Askenase MH,
Guimont-Desrochers F, da Fonseca DM and Belkaid Y: Contextual
functions of antigen-presenting cells in the gastrointestinal
tract. Immunol Rev. 259:75–87. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
de Jong JP, Voerman JS, van der
Sluijs-Gelling AJ, Willemsen R and Ploemacher RE: A monoclonal
antibody (ER-HR3) against murine macrophages. I. Ontogeny,
distribution and enzyme histochemical characterization of
ER-HR3-positive cells. Cell Tissue Res. 275:567–576. 1994.
View Article : Google Scholar : PubMed/NCBI
|
38
|
de Jong JP, Leenen PJ, Voerman JS, van der
Sluijs-Gelling AJ and Ploemacher RE: A monoclonal antibody (ER-HR3)
against murine macrophages. II. Biochemical and functional aspects
of the ER-HR3 antigen. Cell Tissue Res. 275:577–585. 1994.
View Article : Google Scholar : PubMed/NCBI
|