Decoding the heterogeneous landscape in the development prostate cancer (Review)
- Authors:
- Yenifer Yamile Segura-Moreno
- María Carolina Sanabria-Salas
- Rodolfo Varela
- Jorge Andrés Mesa
- Martha Lucia Serrano
-
Affiliations: Cancer Biology Research Group, National Institute of Cancerology, Bogota 110411, Colombia, Department of Urology, National Institute of Cancerology, Bogota 110411, Colombia, Department of Pathology, National Institute of Cancerology, Bogota 110411, Colombia - Published online on: March 15, 2021 https://doi.org/10.3892/ol.2021.12637
- Article Number: 376
-
Copyright: © Segura-Moreno et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
IARC: Global Cancer Observatory https://gco.iarc.fr/today/home: GLOBOCAN, . 2018.The Global Cancer Observatory (GCO) is an interactive web-based platform presenting global cancer statistics to inform cancer control and research. | |
Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY, Jarosz M, Lipson D, Tagawa ST, Nanus DM, et al: Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 63:920–926. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu-Yao G, Albertsen PC, Stanford JL, Stukel TA, Walker-Corkery E and Barry MJ: Screening, treatment, and prostate cancer mortality in the Seattle area and Connecticut: Fifteen-year follow-up. J Gen Intern Med. 23:1809–1814. 2008. View Article : Google Scholar : PubMed/NCBI | |
Partin AW: High-grade prostatic intraepithelial neoplasia on a prostate biopsy-what does it mean? Rev Urol. 4:157–158. 2002.PubMed/NCBI | |
De Marzo AM, Marchi VL, Epstein JI and Nelson WG: Proliferative inflammatory atrophy of the prostate: Implications for prostatic carcinogenesis. Am J Pathol. 155:1985–1992. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Wang J, Lampert E, Schlanger S, DePriest AD, Hu Q, Gomez EC, Murakam M, Glenn ST, Conroy J, et al: Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur Urol. 71:183–192. 2017. View Article : Google Scholar : PubMed/NCBI | |
Epstein JI, Allsbrook WC, Amin MB and Egevad LL; ISUP Grading Committee, : The 2005 International society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma. Am J Surg Pathol. 29:1228–1242. 2005. View Article : Google Scholar : PubMed/NCBI | |
Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR and Humphrey PA; Grading Committee, : The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol. 40:244–252. 2016. View Article : Google Scholar : PubMed/NCBI | |
De Nunzio C, Pastore AL, Lombardo R, Simone G, Leonardo C, Mastroianni R, Collura D, Muto G, Gallucci M, Carbone A, et al: The new Epstein gleason score classification significantly reduces upgrading in prostate cancer patients. Eur J Surg Oncol. 44:835–839. 2018. View Article : Google Scholar : PubMed/NCBI | |
Baca SC and Garraway LA: The genomic landscape of prostate cancer. Front Endocrinol (Lausanne). 3:692012. View Article : Google Scholar : PubMed/NCBI | |
Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, Park K, Kitabayashi N, MacDonald TY, Ghandi M, et al: Punctuated evolution of prostate cancer genomes. Cell. 153:666–677. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, et al: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 310:644–648. 2005. View Article : Google Scholar : PubMed/NCBI | |
Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, et al: Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 44:685–689. 2012. View Article : Google Scholar : PubMed/NCBI | |
Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, et al: The genomic complexity of primary human prostate cancer. Nature. 470:214–220. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, Menon A, Jing X, Cao Q, Han B, et al: Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 448:595–599. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tomlins SA, Alshalalfa M, Davicioni E, Erho N, Yousefi K, Zhao S, Haddad Z, Den RB, Dicker AP, Trock BJ, et al: Characterization of 1577 primary prostate cancers reveals novel biological and clinicopathologic insights into molecular subtypes. Eur Urol. 68:555–567. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . The Molecular Taxonomy of Primary Prostate Cancer. Cell. 163:1011–1025. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dzamba M, Ramani AK, Buczkowicz P, Jiang Y, Yu M, Hawkins C and Brudno M: Identification of complex genomic rearrangements in cancers using CouGaR. Genome Res. 27:107–117. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chun TY: Coincidence of bladder and prostate cancer. J Urol. 157:65–67. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, Wang X, Wu L, Li J, Hu M, Gong Y, et al: An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 17:443–454. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, Zhang J, Rose DW, Fu XD, Glass CK and Rosenfeld MG: Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 139:1069–1083. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, Palanisamy N and Chinnaiyan AM: Induced chromosomal proximity and gene fusions in prostate cancer. Science. 326:12302009. View Article : Google Scholar : PubMed/NCBI | |
Jung SH, Shin S, Kim MS, Baek IP, Lee JY, Lee SH, Kim TM, Lee SH and Chung YJ: Genetic progression of high grade prostatic intraepithelial neoplasia to prostate cancer. Eur Urol. 69:823–830. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, et al: Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA. 101:811–816. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, Patel S, Wang X, Liang H, Yu J, et al: Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 19:664–678. 2011. View Article : Google Scholar : PubMed/NCBI | |
Williamson SR and Cheng L: Potential for targeted therapy in prostate cancers with ERG abnormalities. Asian J Androl. 13:781–782. 2011. View Article : Google Scholar : PubMed/NCBI | |
Karpova Y, Wu C, Divan A, McDonnell ME, Hewlett E, Makhov P, Gordon J, Ye M, Reitz AB, Childers WE, et al: Non-NAD-like PARP-1 inhibitors in prostate cancer treatment. Biochem Pharmacol. 167:149–162. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kunderfranco P, Mello-Grand M, Cangemi R, Pellini S, Mensah A, Albertini V, Malek A, Chiorino G, Catapano CV and Carbone GM: ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One. 5:e105472010. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, et al: Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 4:209–221. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gao T, Mei Y, Sun H, Nie Z, Liu X and Wang S: The association of Phosphatase and tensin homolog (PTEN) deletion and prostate cancer risk: A meta-analysis. Biomed Pharmacother. 83:114–121. 2016. View Article : Google Scholar : PubMed/NCBI | |
Leinonen KA, Saramäki OR, Furusato B, Kimura T, Takahashi H, Egawa S, Suzuki H, Keiger K, Ho Hahm S, Isaacs WB, et al: Loss of PTEN is associated with aggressive behavior in ERG-positive prostate cancer. Cancer Epidemiol Biomarkers Prev. 22:2333–2344. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ngollo M, Lebert A, Dagdemir A, Judes G, Karsli-Ceppioglu S, Daures M, Kemeny JL, Penault-Llorca F, Boiteux JP, Bignon YJ, et al: The association between histone 3 lysine 27 trimethylation (H3K27me3) and prostate cancer: Relationship with clinicopathological parameters. BMC Cancer. 14:9942014. View Article : Google Scholar : PubMed/NCBI | |
Ishigami-Yuasa M, Ekimoto H and Kagechika H: Class IIb HDAC inhibition enhances the inhibitory effect of Am80, a synthetic retinoid, in prostate cancer. Biol Pharm Bull. 42:448–452. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Zhang Z, Cheng L, Wang R, Chen X, Kong Y, Feng F, Ahmad N, Li L and Liu X: Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer. J Biol Chem. 294:9911–9923. 2019. View Article : Google Scholar : PubMed/NCBI | |
Taplin ME, Hussain A, Shah S, Neal D. Shore, Manish Agrawal, William Clark, et al: ProSTAR: A phase Ib/II study of CPI-1205, a small molecule inhibitor of EZH2, combined with enzalutamide (E) or abiraterone/prednisone (A/P) in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2019. View Article : Google Scholar : PubMed/NCBI | |
Koh CM, Iwata T, Zheng Q, Bethel C, Yegnasubramanian S and De Marzo AM: Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget. 2:669–683. 2011. View Article : Google Scholar : PubMed/NCBI | |
Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, et al: Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 322:1695–699. 2008. View Article : Google Scholar : PubMed/NCBI | |
Börno ST, Fischer A, Kerick M, Fälth M, Laible M, Brase JC, Kuner R, Dahl A, Grimm C, Sayanjali B, et al: Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov. 2:1024–1035. 2012. View Article : Google Scholar : PubMed/NCBI | |
Melling N, Thomsen E, Tsourlakis MC, Kluth M, Hube-Magg C, Minner S, Koop C, Graefen M, Heinzer H, Wittmer C, et al: Overexpression of enhancer of zeste homolog 2 (EZH2) characterizes an aggressive subset of prostate cancers and predicts patient prognosis independently from pre- and postoperatively assessed clinicopathological parameters. Carcinogenesis. 36:1333–1340. 2015. View Article : Google Scholar : PubMed/NCBI | |
Uchiyama N, Tanaka Y and Kawamoto T: Aristeromycin and DZNeP cause growth inhibition of prostate cancer via induction of mir-26a. Eur J Pharmacol. 812:138–146. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kirschner AN, Wang J, van der Meer R, Anderson PD, Franco-Coronel OE, Kushner MH, Everett JH, Hameed O, Keeton EK, Ahdesmaki M, et al: PIM kinase inhibitor AZD1208 for treatment of MYC-driven prostate cancer. J Natl Cancer Inst. 107:dju4072015. View Article : Google Scholar : PubMed/NCBI | |
Rebello RJ, Kusnadi E, Cameron DP, Pearson HB, Lesmana A, Devlin JR, Drygin D, Clark AK, Porter L, Pedersen J, et al: The dual inhibition of RNA Pol I transcription and PIM kinase as a new therapeutic approach to treat advanced prostate cancer. Clin Cancer Res. 22:5539–5552. 2016. View Article : Google Scholar : PubMed/NCBI | |
Boysen G, Barbieri CE, Prandi D, Blattner M, Chae SS, Dahija A, Nataraj S, Huang D, Marotz C, Xu L, et al: SPOP mutation leads to genomic instability in prostate cancer. Elife. 4:e092072015. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues LU, Rider L, Nieto C, Romero L, Karimpour-Fard A, Loda M, Lucia MS, Wu M, Shi L, Cimic A, et al: Coordinate loss of MAP3K7 and CHD1 promotes aggressive prostate cancer. Cancer Res. 75:1021–1034. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, et al: The mutational landscape of lethal castration-resistant prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shen C, Zhang J, Qi M, Chang YWY and BH: Roles of serine protease inhibitor kazal type 1 (SPINK1) in prostate cancer. Med chem. 4:725–728. 2014. View Article : Google Scholar | |
Liu D, Takhar M, Alshalalfa M, Erho N, Shoag J, Jenkins RB, Karnes RJ, Ross AE, Schaeffer EM, Rubin MA, et al: Impact of the SPOP mutant subtype on the interpretation of clinical parameters in prostate cancer. JCO Precis Oncol. 2018:102018. | |
Johnson MH, Ross AE, Alshalalfa M, Erho N, Yousefi K, Glavaris S, Fedor H, Han M, Faraj SF, Bezerra SM, et al: SPINK1 Defines a molecular subtype of prostate cancer in men with more rapid progression in an at risk, natural history radical prostatectomy cohort. J Urol. 196:1436–1444. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yun SJ, Kim SK, Kim J, Cha EJ, Kim JS, Kim SJ, Ha YS, Kim YH, Jeong P, Kang HW, et al: Transcriptomic features of primary prostate cancer and their prognostic relevance to castration-resistant prostate cancer. Oncotarget. 8:114845–114855. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tiwari R, Manzar N, Bhatia V, Yadav A, Nengroo MA, Datta D, Carskadon S, Gupta N, Sigouros M, Khani F, et al: Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nat Commun. 11:3842020. View Article : Google Scholar : PubMed/NCBI | |
Geng C, Rajapakshe K, Shah SS, Shou J, Eedunuri VK, Foley C, Fiskus W, Rajendran M, Chew SA, Zimmermann M, et al: Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Cancer Res. 74:5631–5643. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu D, Lee J, Lee A and Lee R: Development of a new approach for the therapy of prostate cancer with SPOP mutations. J Cancer Therapy. 6:841–848. 2015. View Article : Google Scholar | |
Boysen G, Rodrigues DN, Rescigno P, Seed G, Dolling D, Riisnaes R, Crespo M, Zafeiriou Z, Sumanasuriya S, Bianchini D, et al: SPOP-Mutated/CHD1-deleted lethal prostate cancer and abiraterone sensitivity. Clin Cancer Res. 24:5585–5593. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ateeq B, Tomlins SA, Laxman B, Asangani IA, Cao Q, Cao X, Li Y, Wang X, Feng FY, Pienta KJ, et al: Therapeutic targeting of SPINK1-positive prostate cancer. Sci Transl Med. 3:72ra172011. View Article : Google Scholar : PubMed/NCBI | |
Stelloo S, Nevedomskaya E, Kim Y, Schuurman K, Valle-Encinas E, Lobo J, Krijgsman O, Peeper DS, Chang SL, Feng FY, et al: Integrative epigenetic taxonomy of primary prostate cancer. Nat Commun. 9:49002018. View Article : Google Scholar : PubMed/NCBI | |
Imamura Y, Sakamoto S, Endo T, Utsumi T, Fuse M, Suyama T, Kawamura K, Imamoto T, Yano K, Uzawa K, et al: FOXA1 promotes tumor progression in prostate cancer via the insulin-like growth factor binding protein 3 pathway. PLoS One. 7:e424562012. View Article : Google Scholar : PubMed/NCBI | |
Adams EJ, Karthaus WR, Hoover E, Liu D, Gruet A, Zhang Z, Cho H, DiLoreto R, Chhangawala S, Liu Y, et al: FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature. 571:408–412. 2019. View Article : Google Scholar : PubMed/NCBI | |
Song B, Park SH, Zhao JC, Fong KW, Li S, Lee Y, Yang YA, Sridhar S, Lu X, Abdulkadir SA, et al: Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression. J Clin Invest. 129:569–582. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gui B, Gui F, Takai T, Feng C, Bai X, Fazli L, Dong X, Liu S, Zhang X, Zhang W, et al: Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc Natl Acad Sci USA. 116:14573–14582. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, et al: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 19:17–30. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ghiam AF, Cairns RA, Thoms J, Dal Pra A, Ahmed O, Meng A, Mak TW and Bristow RG: IDH mutation status in prostate cancer. Oncogene. 31:38262012. View Article : Google Scholar : PubMed/NCBI | |
Mondesir J, Willekens C, Touat M and de Botton S: IDH1 and IDH2 mutations as novel therapeutic targets: Current perspectives. J Blood Med. 7:171–180. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu YM, Cieślik M, Lonigro RJ, Vats P, Reimers MA, Cao X, Ning Y, Wang L, Kunju LP, de Sarkar N, et al: Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 173:1770–1782.e14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, Demichelis F, Helgeson BE, Laxman B, Morris DS, et al: The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell. 13:519–528. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM and Trapman J: TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res. 66:10658–10663. 2006. View Article : Google Scholar : PubMed/NCBI | |
Thangapazham R, Saenz F, Katta S, Mohamed AA, Tan SH, Petrovics G, Srivastava S and Dobi A: Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer. BMC Cancer. 14:162014. View Article : Google Scholar : PubMed/NCBI | |
Fontugne J, Davis K, Palanisamy N, Udager A, Mehra R, McDaniel AS, Siddiqui J, Rubin MA, Mosquera JM and Tomlins SA: Clonal evaluation of prostate cancer foci in biopsies with discontinuous tumor involvement by dual ERG/SPINK1 immunohistochemistry. Mod Pathol. 29:157–165. 2016. View Article : Google Scholar : PubMed/NCBI | |
Løvf M, Zhao S, Axcrona U, Johannessen B, Bakken AC, Carm KT, Hoff AM, Myklebost O, Meza-Zepeda LA and Lie AK: Multifocal primary prostate cancer exhibits high degree of genomic heterogeneity. Eur Urol. 75:498–505. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang CC, Deng FM, Kong MX, Ren Q, Melamed J and Zhou M: Re-evaluating the concept of ‘dominant/index tumor nodule’ in multifocal prostate cancer. Virchows Arch. 464:589–594. 2014. View Article : Google Scholar : PubMed/NCBI | |
McNeal JE, Price HM, Redwine EA, Freiha FS and Stamey TA: Stage A versus stage B adenocarcinoma of the prostate: Morphological comparison and biological significance. J Urol. 139:61–65. 1988. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G, Chen L, Ewing CM, Eisenberger MA, Carducci MA, et al: Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med. 15:559–565. 2009. View Article : Google Scholar : PubMed/NCBI | |
Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM, Walker DA, Adejola N, Gürel M, Hicks J, Meeker AK, et al: Tracking the clonal origin of lethal prostate cancer. J Clin Invest. 123:4918–4922. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barry M, Perner S, Demichelis F and Rubin MA: TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology. 70:630–633. 2007. View Article : Google Scholar : PubMed/NCBI | |
Furusato B, Gao CL, Ravindranath L, Chen Y, Cullen J, McLeod DG, Dobi A, Srivastava S, Petrovics G and Sesterhenn IA: Mapping of TMPRSS2-ERG fusions in the context of multi-focal prostate cancer. Mod Pathol. 21:67–75. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yoshimoto M, Ding K, Sweet JM, Ludkovski O, Trottier G, Song KS, Joshua AM, Fleshner NE, Squire JA and Evans AJ: PTEN losses exhibit heterogeneity in multifocal prostatic adenocarcinoma and are associated with higher Gleason grade. Mod Pathol. 26:435–447. 2013. View Article : Google Scholar : PubMed/NCBI | |
Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, Lalonde E, Meng A, Hennings-Yeomans PH, McPherson A, Sabelnykova VY, et al: Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 47:736–745. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, Kremeyer B, Butler A, Lynch AG, Camacho N, et al: Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 47:367–372. 2015. View Article : Google Scholar : PubMed/NCBI | |
Crawford ED, Heidenreich A, Lawrentschuk N, Tombal B, Pompeo ACL, Mendoza-Valdes A, Miller K, Debruyne FMJ and Klotz L: Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate Cancer Prostatic Dis. 22:24–38. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vickers AJ, Bianco FJ, Serio AM, Eastham JA, Schrag D, K EA, Reuther AM, Kattan MW, Pontes JE and Scardino PT: The surgical learning curve for prostate cancer control after radical prostatectomy. J Natl Cancer Inst. 99:1171–1177. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yu EY, Gulati R, Telesca D, Jiang P, Tam S, Russell KJ, Nelson PS, Etzioni RD and Higano CS: Duration of first off-treatment interval is prognostic for time to castration resistance and death in men with biochemical relapse of prostate cancer treated on a prospective trial of intermittent androgen deprivation. J Clin Oncol. 28:2668–2673. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang KC, Evans A, Donnelly B and Bismar TA: SPINK1 Overexpression in localized prostate cancer: A rare event inversely associated with ERG expression and exclusive of homozygous PTEN deletion. Pathol Oncol Res. 23:399–407. 2017. View Article : Google Scholar : PubMed/NCBI | |
Green SM, Mostaghel EA and Nelson PS: Androgen action and metabolism in prostate cancer. Mol Cell Endocrinol. 360:3–13. 2012. View Article : Google Scholar : PubMed/NCBI | |
Phin S, Moore MW and Cotter PD: Genomic rearrangements of PTEN in prostate cancer. Front Oncol. 3:2402013. View Article : Google Scholar : PubMed/NCBI | |
Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, et al: Integrative genomic profiling of human prostate cancer. Cancer Cell. 18:11–22. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Cunningham JJ, Brown JS and Gatenby RA: Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat Commun. 8:18162017. View Article : Google Scholar : PubMed/NCBI | |
Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J and Witte ON: Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci USA. 107:2610–2615. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Park D, Zhong Y, Lu Y, Rycaj K, Gong S, Chen X, Liu X, Chao HP, Whitney P, et al: Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat Commun. 7:107982016. View Article : Google Scholar : PubMed/NCBI | |
Nouri M, Caradec J, Lubik AA, Li N, Hollier BG, Takhar M, Altimirano-Dimas M, Chen M, Roshan-Moniri M, Butler M, et al: Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance. Oncotarget. 8:18949–18967. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Wyatt AW, Lapuk AV, McPherson A, McConeghy BJ, Bell RH, Anderson S, Haegert A, Brahmbhatt S, Shukin R, et al: Integrated genome and transcriptome sequencing identifies a novel form of hybrid and aggressive prostate cancer. J Pathol. 227:53–61. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lipianskaya J, Cohen A, Chen CJ, Hsia E, Squires J, Li Z, Zhang Y, Li W, Chen X, Xu H and Huang J: Androgen-deprivation therapy-induced aggressive prostate cancer with neuroendocrine differentiation. Asian J Androl. 16:541–544. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, Pagliaro LC, Kim J, Millikan RE, Ryan C, et al: Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res. 19:3621–3630. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bonkhoff H and Remberger K: Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: A stem cell model. Prostate. 28:98–106. 1996. View Article : Google Scholar : PubMed/NCBI | |
Cortés MA, Cariaga-Martinez AE, Lobo MV, Martín Orozco RM, Motiño O, Rodríguez-Ubreva FJ, Angulo J, López-Ruiz P and Colás B: EGF promotes neuroendocrine-like differentiation of prostate cancer cells in the presence of LY294002 through increased ErbB2 expression independent of the phosphatidylinositol 3-kinase-AKT pathway. Carcinogenesis. 33:1169–1177. 2012. View Article : Google Scholar : PubMed/NCBI | |
Abrahamsson PA, Wadström LB, Alumets J, Falkmer S and Grimelius L: Peptide-hormone- and serotonin-immunoreactive tumour cells in carcinoma of the prostate. Pathol Res Pract. 182:298–307. 1987. View Article : Google Scholar : PubMed/NCBI | |
Thompson J, Hyytinen ER, Haapala K, Rantala I, Helin HJ, Jänne OA, Palvimo JJ and Koivisto PA: Androgen receptor mutations in high-grade prostate cancer before hormonal therapy. Lab Invest. 83:1709–1713. 2003. View Article : Google Scholar : PubMed/NCBI | |
Röpke A, Erbersdobler A, Hammerer P, Palisaar J, John K, Stumm M and Wieacker P: Gain of androgen receptor gene copies in primary prostate cancer due to X chromosome polysomy. Prostate. 59:59–68. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nouri M, Ratther E, Stylianou N, Nelson CC, Hollier BG and Williams ED: Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: An opportunity for intervention. Front Oncol. 4:3702014. View Article : Google Scholar : PubMed/NCBI | |
Han G, Buchanan G, Ittmann M, Harris JM, Yu X, Demayo FJ, Tilley W and Greenberg NM: Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proc Natl Acad Sci USA. 102:1151–1156. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kaarbø M, Mikkelsen OL, Malerød L, Qu S, Lobert VH, Akgul G, Halvorsen T, Maelandsmo GM and Saatcioglu F: PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells. Cell Oncol. 32:11–27. 2010.PubMed/NCBI | |
Terry S and Beltran H: The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol. 4:602014. View Article : Google Scholar : PubMed/NCBI | |
Choi N, Zhang B, Zhang L, Ittmann M and Xin L: Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell. 21:253–265. 2012. View Article : Google Scholar : PubMed/NCBI | |
Germann M, Wetterwald A, Guzmán-Ramirez N, vander Pluijm G, Culig Z, Cecchini MG, Williams ED and Thalmann GN: Stem-like cells with luminal progenitor phenotype survive castration in human prostate cancer. Stem Cells. 30:1076–1086. 2012. View Article : Google Scholar : PubMed/NCBI | |
Evans AJ, Humphrey PA, Belani J, van der Kwast TH and Srigley JR: Large cell neuroendocrine carcinoma of prostate: A clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am J Surg Pathol. 30:684–693. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Sun Y, Wu C, Magyar CE, Li X, Cheng L, Yao JL, Shen S, Osunkoya AO, Liang C and Huang J: Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway. Endocr Relat Cancer. 19:321–331. 2012. View Article : Google Scholar : PubMed/NCBI | |
Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV, Varambally S, et al: Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 22:298–305. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aparicio A, Logothetis CJ and Maity SN: Understanding the lethal variant of prostate cancer: Power of examining extremes. Cancer Discov. 1:466–468. 2011. View Article : Google Scholar : PubMed/NCBI |