Role of exosomes in the immune microenvironment of ovarian cancer (Review)
- Authors:
- Xiao Li
- Yang Liu
- Shuangshuang Zheng
- Tianyu Zhang
- Jing Wu
- Yue Sun
- Jingzi Zhang
- Guoyan Liu
-
Affiliations: Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China, Department of Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China - Published online on: March 15, 2021 https://doi.org/10.3892/ol.2021.12638
- Article Number: 377
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Drakes ML and Stiff PJ: Regulation of ovarian cancer prognosis by immune cells in the tumor microenvironment. Cancers (Basel). 10:3022018. View Article : Google Scholar | |
Gajewski TF, Schreiber H and Fu YX: Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 14:1014–1022. 2013. View Article : Google Scholar : PubMed/NCBI | |
Albini A, Bruno A, Noonan DM and Mortara L: Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: Implications for immunotherapy. Front Immunol. 9:5272018. View Article : Google Scholar : PubMed/NCBI | |
Cassim S and Pouyssegur J: Tumor microenvironment: A metabolic player that shapes the immune response. Int J Mol Sci. 21:1572019. View Article : Google Scholar | |
Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, et al: Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 360:295–305. 2002. View Article : Google Scholar : PubMed/NCBI | |
Giordano C, La Camera G, Gelsomino L, Barone I, Bonofiglio D, Ando S and Catalano S: The biology of exosomes in breast cancer progression: Dissemination, immune evasion and metastatic colonization. Cancers (Basel). 12:21792020. View Article : Google Scholar | |
Kulkarni B, Kirave P, Gondaliya P, Jash K, Jain A, Tekade RK and Kalia K: Exosomal miRNA in chemoresistance, immune evasion, metastasis and progression of cancer. Drug Discov Today. 24:2058–2067. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lundholm M, Schroder M, Nagaeva O, Baranov V, Widmark A, Mincheva-Nilsson L and Wikström P: Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: Mechanism of immune evasion. PLoS One. 9:e1089252014. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Wu S, Zhang K, Qing Y and Xu T: A comprehensive overview of exosomes in ovarian cancer: Emerging biomarkers and therapeutic strategies. J Ovarian Res. 10:732017. View Article : Google Scholar : PubMed/NCBI | |
Beach A, Zhang HG, Ratajczak MZ and Kakar SS: Exosomes: An overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res. 7:142014. View Article : Google Scholar : PubMed/NCBI | |
Doyle LM and Wang MZ: Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8:7272019. View Article : Google Scholar | |
Sharma A and Johnson A: Exosome DNA: Critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol. 235:1921–1932. 2020. View Article : Google Scholar : PubMed/NCBI | |
Iliev D, Strandskog G, Nepal A, Aspar A, Olsen R, Jørgensen J, Wolfson D, Ahluwalia BS, Handzhiyski J and Mironova R: Stimulation of exosome release by extracellular DNA is conserved across multiple cell types. FEBS J. 285:3114–3133. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, Xu Y, Wu YS, Hu XM, Ping BH and Wang Q: Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med. 40:834–844. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shyu KG, Wang BW, Pan CM, Fang WJ and Lin CM: Hyperbaric oxygen boosts long noncoding RNA MALAT1 exosome secretion to suppress microRNA-92a expression in therapeutic angiogenesis. Int J Cardiol. 274:271–278. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, Zhao ZJ, Blick KE, Dooley WC and Ding WQ: Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 18:902016. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Sawada K, Miyamoto M, Shimizu A, Yamamoto M, Kinose Y, Nakamura K, Kawano M, Kodama M, Hashimoto K and Kimura T: Exploring the potential of engineered exosomes as delivery systems for tumor-suppressor microRNA replacement therapy in ovarian cancer. Biochem Biophys Res Commun. 527:153–161. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mittal S, Gupta P, Chaluvally-Raghavan P and Pradeep S: Emerging role of extracellular vesicles in immune regulation and cancer progression. Cancers (Basel). 12:35632020. View Article : Google Scholar | |
Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X and Shen K: Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics. 80:171–182. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peng P, Yan Y and Keng S: Exosomes in the ascites of ovarian cancer patients: Origin and effects on anti-tumor immunity. Oncol Rep. 25:749–762. 2011.PubMed/NCBI | |
Luo Z, Wang Q, Lau WB, Lau B, Xu L, Zhao L, Yang H, Feng M, Xuan Y, Yang Y, et al: Tumor microenvironment: The culprit for ovarian cancer metastasis? Cancer Lett. 377:174–182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Da Silva AC, Jammal MP, Crispim PCA, Murta EFC and Nomelini RS: The role of stroma in ovarian cancer. Immunol Invest. 49:406–424. 2020. View Article : Google Scholar : PubMed/NCBI | |
Josephs SF, Ichim TE, Prince SM, Kesari S, Marincola FM, Escobedo AR and Jafri A: Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl Med. 16:2422018. View Article : Google Scholar : PubMed/NCBI | |
Wen Z, Liu H, Li M, Li B, Gao W, Shao Q, Fan B, Zhao F, Wang Q, Xie Q, et al: Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene. 34:1241–1252. 2015. View Article : Google Scholar : PubMed/NCBI | |
Browning L, Patel MR, Horvath EB, Tawara K and Jorcyk CL: IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manag Res. 10:6685–6693. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sanmarco LM, Ponce NE, Visconti LM, Eberhardt N, Theumer MG, Minguez AR and Aoki MP: IL-6 promotes M2 macrophage polarization by modulating purinergic signaling and regulates the lethal release of nitric oxide during Trypanosoma cruzi infection. Biochim Biophys Acta Mol Basis Dis. 1863:857–869. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yin Z, Ma T, Lin Y, Lu X, Zhang C, Chen S and Jian Z: IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. J Cell Biochem. 119:9419–9432. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fu XL, Duan W, Su CY, Mao FY, Lv YP, Teng YS, Yu PW, Zhuang Y and Zhao YL: Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunol Immunother. 66:1597–1608. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang B, Zhu SJ, Xiao SS and Xue M: miR-217 Inhibits M2-like macrophage polarization by suppressing secretion of interleukin-6 in ovarian cancer. Inflammation. 42:1517–1529. 2019. View Article : Google Scholar : PubMed/NCBI | |
McLean K, Tan L, Bolland DE, Coffman LG, Peterson LF, Talpaz M, Neamati N and Buckanovich RJ: Leukemia inhibitory factor functions in parallel with interleukin-6 to promote ovarian cancer growth. Oncogene. 38:1576–1584. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zong X, Mitra S, Mitra AK, Matei D and Nephew KP: IL-6 mediates platinum-induced enrichment of ovarian cancer stem cells. JCI Insight. 3:e1223602018. View Article : Google Scholar | |
Bretz NP, Ridinger J, Rupp AK, Rimbach K, Keller S, Rupp C, Marmé F, Umansky L, Umansky V, Eigenbrod T, et al: Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling. J Biol Chem. 288:36691–3702. 2013. View Article : Google Scholar : PubMed/NCBI | |
De Marco M, Falco A, Festa M, Raffone A, Sandullo L, Rosati A, Reppucci F, Cammarota AL, Esposito F, Matassa DS, et al: Different mechanisms underlie IL-6 release in chemosensitive and chemoresistant ovarian carcinoma cells. Am J Cancer Res. 10:2596–2602. 2020.PubMed/NCBI | |
Kumari N, Dwarakanath BS, Das A and Bhatt AN: Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 37:11553–11572. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Niu XL, Qu Y, Wu J, Zhu YQ, Sun WJ and Li LZ: Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Lett. 295:110–123. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kampan NC, Madondo MT, Reynolds J, Hallo J, McNally OM, Jobling TW, Stephens AN, Quinn MA and Plebanski M: Pre-operative sera interleukin-6 in the diagnosis of high-grade serous ovarian cancer. Sci Rep. 10:22132020. View Article : Google Scholar : PubMed/NCBI | |
Isobe A, Sawada K, Kinose Y, Ohyagi-Hara C, Nakatsuka E, Makino H, Ogura T, Mizuno T, Suzuki N, Morii E, et al: Interleukin 6 receptor is an independent prognostic factor and a potential therapeutic target of ovarian cancer. PLoS One. 10:e01180802015. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Zhang J, Li D, Mao Y, Mo F, Du W and Ma X: Prognostic significance of tumor-associated macrophages in ovarian cancer: A meta-analysis. Gynecol Oncol. 147:181–187. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maccio A, Gramignano G, Cherchi MC, Tanca L, Melis L and Madeddu C: Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci Rep. 10:60962020. View Article : Google Scholar : PubMed/NCBI | |
Carroll MJ, Kapur A, Felder M, Patankar MS and Kreeger PK: M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop. Oncotarget. 7:86608–86620. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou ZN, Sharma VP, Beaty BT, Roh-Johnson M, Peterson EA, Van Rooijen N, Kenny PA, Wiley HS, Condeelis JS and Segall JE: Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo. Oncogene. 33:3784–3793. 2014. View Article : Google Scholar : PubMed/NCBI | |
Haque S and Morris JC: Transforming growth factor-β: A therapeutic target for cancer. Hum Vaccin Immunother. 13:1741–1750. 2017. View Article : Google Scholar : PubMed/NCBI | |
Steitz AM, Steffes A, Finkernagel F, Unger A, Sommerfeld L, Jansen JM, Wagner U, Graumann J, Müller R and Reinartz S: Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis. 11:2492020. View Article : Google Scholar : PubMed/NCBI | |
Dasari S, Fang Y and Mitra AK: Cancer associated fibroblasts: Naughty neighbors that drive ovarian cancer progression. Cancers (Basel). 10:4062018. View Article : Google Scholar | |
Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, Liu Y, Zhou X, Zhang T, Gong C, et al: Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med. 216:688–703. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhuang J, Lu Q, Shen B, Huang X, Shen L, Zheng X, Huang R, Yan J and Guo H: TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep. 5:119242015. View Article : Google Scholar : PubMed/NCBI | |
Kan T, Wang W, Ip PP, Zhou S, Wong AS, Wang X and Yang M: Single-cell EMT-related transcriptional analysis revealed intra-cluster heterogeneity of tumor cell clusters in epithelial ovarian cancer ascites. Oncogene. 39:4227–4240. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han Q, Huang B, Huang Z, Cai J, Gong L, Zhang Y, Jiang J, Dong W and Wang Z: Tumor cell-fibroblast heterotypic aggregates in malignant ascites of patients with ovarian cancer. Int J Mol Med. 44:2245–2255. 2019.PubMed/NCBI | |
Liu CL, Pan HW, Torng PL, Fan MH and Mao TL: SRPX and HMCN1 regulate cancer-associated fibroblasts to promote the invasiveness of ovarian carcinoma. Oncol Rep. 42:2706–2715. 2019.PubMed/NCBI | |
De Cicco P, Ercolano G and Ianaro A: The new era of cancer immunotherapy: Targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 11:16802020. View Article : Google Scholar : PubMed/NCBI | |
Sasidharan Nair V and Elkord E: Immune checkpoint inhibitors in cancer therapy: A focus on T-regulatory cells. Immunol Cell Biol. 96:21–33. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang J, Wu W, Gao H, Liu N, Zhan G, Li L, Han L and Guo X: Myeloid-derived suppressor cells promote epithelial ovarian cancer cell stemness by inducing the CSF2/p-STAT3 signalling pathway. FEBS J. 287:5218–5235. 2020. View Article : Google Scholar : PubMed/NCBI | |
Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, Yoshioka Y, Koshiyama M and Konishi I: Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res. 23:587–599. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dutsch-Wicherek MM, Szubert S, Dziobek K, Wisniewski M, Lukaszewska E, Wicherek L, Jozwicki W, Rokita W and Koper K: Analysis of the treg cell population in the peripheral blood of ovarian cancer patients in relation to the long-term outcomes. Ginekol Pol. 90:179–184. 2019. View Article : Google Scholar : PubMed/NCBI | |
Batlle E and Massague J: Transforming growth Factor-beta signaling in immunity and cancer. Immunity. 50:924–940. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Jiang W, Huang W, Ye M and Zhu X: Prognostic values of transforming growth Factor-Beta subtypes in ovarian cancer. Biomed Res Int. 2020:21706062020.PubMed/NCBI | |
Wen H, Qian M, He J, Li M, Yu Q and Leng Z: Inhibiting of self-renewal, migration and invasion of ovarian cancer stem cells by blocking TGF-beta pathway. PLoS One. 15:e02302302020. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Li LD, Li J, Chen RF, Yu HL, Sun HF, Wang JY and Lu X: A FXYD5/TGFβ/SMAD positive feedback loop drives epithelial-to-mesenchymal transition and promotes tumor growth and metastasis in ovarian cancer. Int J Oncol. 56:301–314. 2020.PubMed/NCBI | |
Fukui S, Nagasaka K, Miyagawa Y, Kikuchi-Koike R, Kawata Y, Kanda R, Ichinose T, Sugihara T, Hiraike H, Wada-Hiraike O, et al: The proteasome deubiquitinase inhibitor bAP15 downregulates TGF-β/Smad signaling and induces apoptosis via UCHL5 inhibition in ovarian cancer. Oncotarget. 10:5932–5948. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kulbe H, Chakravarty P, Leinster DA, Charles KA, Kwong J, Thompson RG, Coward JI, Schioppa T, Robinson SC, Gallagher WM, et al: A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res. 72:66–75. 2012. View Article : Google Scholar : PubMed/NCBI | |
Carbotti G, Petretto A, Naschberger E, Sturzl M, Martini S, Mingari MC, Filaci G, Ferrini S and Fabbi M: Cytokine-Induced Guanylate Binding Protein 1 (GBP1) release from human ovarian cancer cells. Cancers (Basel). 12:4882020. View Article : Google Scholar | |
Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, et al: Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife. 5:e102502016. View Article : Google Scholar : PubMed/NCBI | |
Whiteside TL: The effect of tumor-derived exosomes on immune regulation and cancer immunotherapy. Future Oncol. 13:2583–2592. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gong M, Yu B, Wang J, Wang Y, Liu M, Paul C, Millard RW, Xiao DS, Ashraf M and Xu M: Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget. 8:45200–45212. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Zhou L, Lv D, Zhu X and Tang H: Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol. 12:532019. View Article : Google Scholar : PubMed/NCBI | |
Dorayappan KDP, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA, Cohn DE and Selvendiran K: Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: A novel mechanism linking STAT3/Rab proteins. Oncogene. 37:3806–3821. 2018. View Article : Google Scholar : PubMed/NCBI | |
Matias Ostrowski NBC, Sophie Krumeich, Isabelle Fanget, Graça Raposo, Ariel Savina, et al: Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 12:19–30. 2010. View Article : Google Scholar : PubMed/NCBI | |
Qiu JJ, Lin XJ, Tang XY, Zheng TT, Lin YY and Hua KQ: Exosomal metastasis associated lung adenocarcinoma Transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int J Biol Sci. 14:1960–1973. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang MKS, Yue PYK, Ip PP, Huang RL, Lai HC, Cheung ANY, Tse KY, Ngan HYS and Wong AST: Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat Commun. 9:22702018. View Article : Google Scholar : PubMed/NCBI | |
Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, Mustea A, Sehouli J, Kristiansen G and Altevogt P: Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol. 107:563–571. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, Li J, Li F and Tan HB: Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 470:126–133. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu SJ, Hu HT, Li HL and Chang S: The role of miRNAs in immune cell development, immune cell activation, and tumor immunity: With a focus on macrophages and natural killer cells. Cells. 8:11402019. View Article : Google Scholar | |
Rhee I: Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res. 39:1588–1596. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tashiro-Yamaji J, Kubota T and Yoshida R: Macrophage MHC receptor 2: A novel receptor on allograft (H-2D(d)K(d))-induced macrophage (H-2D(b)K(b)) recognizing an MHC class I molecule, H-2K(d), in mice. Gene. 384:1–8. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhou J, Li X and Wang X, Lin Y and Wang X: Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett. 435:80–91. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ruffell B, Affara NI and Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33:119–126. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Funes SC, Rios M, Escobar-Vera J and Kalergis AM: Implications of macrophage polarization in autoimmunity. Immunology. 154:186–195. 2018. View Article : Google Scholar : PubMed/NCBI | |
Madeddu C, Gramignano G, Kotsonis P, Coghe F, Atzeni V, Scartozzi M and Macciò A: Microenvironmental M1 tumor-associated macrophage polarization influences cancer-related anemia in advanced ovarian cancer: Key role of interleukin-6. Haematologica. 103:e388–e391. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reinartz S, Schumann T, Finkernagel F, Wortmann A, Jansen JM, Meissner W, Krause M, Schwörer AM, Wagner U, Müller-Brüsselbach S and Müller R: Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: Correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer. 134:32–42. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nowak M and Klink M: The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells. 9:12992020. View Article : Google Scholar | |
Zhu Q, Wu X, Wu Y and Wang X: Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer. Oncol Rep. 36:3472–3478. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Li X, Wu X, Zhang T, Zhu Q and Wang X, Wang H, Wang K, Lin Y and Wang X: Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res. 6:1578–1592. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang YJ, Huang TH, Yadav VK, Sumitra MR, Tzeng DT, Wei PL, Shih JW and Wu AT: Preclinical investigation of ovatodiolide as a potential inhibitor of colon cancer stem cells via downregulating sphere-derived exosomal beta-catenin/STAT3/miR-1246 cargoes. Am J Cancer Res. 10:2337–2354. 2020.PubMed/NCBI | |
Xiao L, He Y, Peng F, Yang J and Yuan C: Endometrial cancer cells promote M2-like macrophage polarization by delivering exosomal miRNA-21 under hypoxia condition. J Immunol Res. 2020:97310492020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L and Qiu Z: Hypoxic tumor-derived exosomal miR-301a Mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic cancer metastasis. Cancer Res. 78:4586–4598. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bardi GT, Smith MA and Hood JL: Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine. 105:63–72. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lei Y, Wu M and Li N: Regulation of macrophage activation and polarization by HCC-derived exosomal lncRNA TUC339. Int J Mol Sci. 19:29582018. View Article : Google Scholar | |
Piao YJ, Kim HS, Hwang EH, Woo J, Zhang M and Moon WK: Breast cancer cell-derived exosomes and macrophage polarization are associated with lymph node metastasis. Oncotarget. 9:7398–7410. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pritchard A, Tousif S, Wang Y, Hough K, Khan S, Strenkowski J, Chacko BK, Darley-Usmar VM and Deshane JS: Lung tumor cell-derived exosomes promote M2 macrophage polarization. Cells. 9:13032020. View Article : Google Scholar | |
Chen X, Ying X and Wang X, Wu X, Zhu Q and Wang X: Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep. 38:522–528. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li X and Tang M: Exosomes released from M2 macrophages transfer miR-221-3p contributed to EOC progression through targeting CDKN1B. Cancer Med. 9:5976–5988. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ying X, Wu Q, Wu X, Zhu Q and Wang X, Jiang L, Chen X and Wang X: Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 7:43076–43087. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Wu X, Ying X, Zhu Q and Wang X, Jiang L, Chen X, Wu Y and Wang X: Suppression of endothelial cell migration by tumor associated macrophage-derived exosomes is reversed by epithelial ovarian cancer exosomal lncRNA. Cancer Cell Int. 17:622017. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Li D, Wu A, Qiu X, Di W, Huang L and Qiu L: TWEAK-stimulated macrophages inhibit metastasis of epithelial ovarian cancer via exosomal shuttling of microRNA. Cancer Lett. 393:60–67. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J and Zembala M: Tumour-derived microvesicles modulate biological activity of human monocytes. Immunol Lett. 113:76–82. 2007. View Article : Google Scholar : PubMed/NCBI | |
Baj-Krzyworzeka M, Baran J, Weglarczyk K, Szatanek R, Szaflarska A, Siedlar M and Zembala M: Tumour-derived microvesicles (TMV) mimic the effect of tumour cells on monocyte subpopulations. Anticancer Res. 30:3515–3520. 2010.PubMed/NCBI | |
Baj-Krzyworzeka M, Mytar B, Szatanek R, Surmiak M, Weglarczyk K, Baran J and Siedlar M: Colorectal cancer-derived microvesicles modulate differentiation of human monocytes to macrophages. J Transl Med. 14:362016. View Article : Google Scholar : PubMed/NCBI | |
Moradi-Chaleshtori M, Bandehpour M, Soudi S, Mohammadi-Yeganeh S and Hashemi SM: In vitro and in vivo evaluation of anti-tumoral effect of M1 phenotype induction in macrophages by miR-130 and miR-33 containing exosomes. Cancer Immunol Immunother. 2020.(Epub ahead of print). View Article : Google Scholar | |
Yue S, Ye X, Zhou T, Gan D, Qian H, Fang W, Yao M, Zhang D, Shi H and Chen T: PGRN−/− TAMs-derived exosomes inhibit breast cancer cell invasion and migration and its mechanism exploration. Life Sci. 264:1186872020. View Article : Google Scholar : PubMed/NCBI | |
Han JJ, Yu M, Houston N, Steinberg SM and Kohn EC: Progranulin is a potential prognostic biomarker in advanced epithelial ovarian cancers. Gynecol Oncol. 120:5–10. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carlson AM, Maurer MJ, Goergen KM, Kalli KR, Erskine CL, Behrens MD, Knutson KL and Block MS: Utility of progranulin and serum leukocyte protease inhibitor as diagnostic and prognostic biomarkers in ovarian cancer. Cancer Epidemiol Biomarkers Prev. 22:1730–1735. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dong T, Yang D, Li R, Zhang L, Zhao H, Shen Y, Zhang X, Kong B and Wang L: PGRN promotes migration and invasion of epithelial ovarian cancer cells through an epithelial mesenchymal transition program and the activation of cancer associated fibroblasts. Exp Mol Pathol. 100:17–25. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dou R, Hong Z, Tan X, Hu F, Ding Y, Wang W, Liang Z, Zhong R, Wu X and Weng X: Fas/FasL interaction mediates imbalanced cytokine/cytotoxicity responses of iNKT cells against Jurkat cells. Mol Immunol. 99:145–153. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wallin RP, Screpanti V, Michaelsson J, Grandien A and Ljunggren HG: Regulation of perforin-independent NK cell-mediated cytotoxicity. Eur J Immunol. 33:2727–2735. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tanaka H, Kai S, Yamaguchi M, Misawa M, Fujimori Y, Yamamoto M and Hara H: Analysis of natural killer (NK) cell activity and adhesion molecules on NK cells from umbilical cord blood. Eur J Haematol. 71:29–38. 2003. View Article : Google Scholar : PubMed/NCBI | |
Konjevic GM, Vuletic AM, Mirjacic Martinovic KM, Larsen AK and Jurisic VB: The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine. 117:30–40. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pahl JHW, Cerwenka A and Ni J: Memory-Like NK Cells: Remembering a previous activation by cytokines and NK cell receptors. Front Immunol. 9:27962018. View Article : Google Scholar : PubMed/NCBI | |
Gianchecchi E, Delfino DV and Fierabracci A: NK cells in autoimmune diseases: Linking innate and adaptive immune responses. Autoimmun Rev. 17:142–154. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zitti B and Bryceson YT: Natural killer cells in inflammation and autoimmunity. Cytokine Growth Factor Rev. 42:37–46. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez GM, Galpin KJC, McCloskey CW and Vanderhyden BC: The tumor microenvironment of epithelial ovarian cancer and its influence on response to immunotherapy. Cancers (Basel). 10:2422018. View Article : Google Scholar | |
Zhu L, Kalimuthu S, Oh JM, Gangadaran P, Baek SH, Jeong SY, Lee SW, Lee J and Ahn BC: Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials. 190-191:38–50. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jong AY, Wu CH, Li J, Sun J, Fabbri M, Wayne AS and Seeger RC: Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 6:12943682017. View Article : Google Scholar : PubMed/NCBI | |
Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro F, Paris L, Abalsamo L, Colone M, Molinari A, et al: Immune surveillance properties of human NK cell-derived exosomes. J Immunol. 189:2833–2842. 2012. View Article : Google Scholar : PubMed/NCBI | |
Di Pace A, Tumino N, Besi F, Alicata C, Conti LA, Munari E, Maggi E, Vacca P and Moretta L: Characterization of human NK cell-derived exosomes: Role of DNAM1 receptor in exosome-mediated cytotoxicity against tumor. Cancers (Basel). 12:6612020. View Article : Google Scholar | |
Zhu L, Kalimuthu S, Gangadaran P, Oh JM, Lee HW, Baek SH, Jeong SY, Lee SW, Lee J and Ahn BC: Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics. 7:2732–2745. 2017. View Article : Google Scholar : PubMed/NCBI | |
Neviani P, Wise PM, Murtadha M, Liu CW, Wu CH, Jong AY, Seeger RC and Fabbri M: Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms. Cancer Res. 79:1151–1164. 2019. View Article : Google Scholar : PubMed/NCBI | |
Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O and Borrego F: NK cell metabolism and tumor microenvironment. Front Immunol. 10:22782019. View Article : Google Scholar : PubMed/NCBI | |
Labani-Motlagh A, Israelsson P, Ottander U, Lundin E, Nagaev I, Nagaeva O, Dehlin E, Baranov V and Mincheva-Nilsson L: Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 37:5455–5466. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ishii S and Koziel MJ: Immune responses during acute and chronic infection with hepatitis C virus. Clin Immunol. 128:133–147. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kaech SM and Cui W: Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 12:749–761. 2012. View Article : Google Scholar : PubMed/NCBI | |
Thommen DS and Schumacher TN: T cell dysfunction in cancer. Cancer Cell. 33:547–562. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hiltbrunner S, Larssen P, Eldh M, Martinez-Bravo MJ, Wagner AK, Karlsson MC and Gabrielsson S: Exosomal cancer immunotherapy is independent of MHC molecules on exosomes. Oncotarget. 7:38707–38717. 2016. View Article : Google Scholar : PubMed/NCBI | |
Torralba D, Baixauli F, Villarroya-Beltri C, Fernández-Delgado I, Latorre-Pellicer A, Acín-Pérez R, Martín-Cófreces NB, Jaso-Tamame ÁL, Iborra S, Jorge I, et al: Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun. 9:26582018. View Article : Google Scholar : PubMed/NCBI | |
Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ and Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 183:1161–1172. 1996. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Bi L, He X, Wang Z, Qian Y, Xiao L and Shi B: Follicular helper T cell derived exosomes promote B cell proliferation and differentiation in antibody-mediated rejection after renal transplantation. Biomed Res Int. 2019:63879242019.PubMed/NCBI | |
Fernandez-Messina L, Rodriguez-Galan A, de Yebenes VG, Gutierrez-Vazquez C, Tenreiro S, Seabra MC, Ramiro AR and Sánchez-Madrid F: Transfer of extracellular vesicle-microRNA controls germinal center reaction and antibody production. EMBO Rep. 21:e489252020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang Y, Xiong A, Wu X, Xie J, Han S and Zhao S: Comparative gene expression analysis of lymphocytes treated with exosomes derived from ovarian cancer and ovarian cysts. Front Immunol. 8:6072017. View Article : Google Scholar : PubMed/NCBI | |
Xu HY, Li N, Yao N, Xu XF, Wang HX, Liu XY and Zhang Y: CD8+ T cells stimulated by exosomes derived from RenCa cells mediate specific immune responses through the FasL/Fas signaling pathway and, combined with GM-CSF and IL-12, enhance the anti-renal cortical adenocarcinoma effect. Oncol Rep. 42:866–879. 2019.PubMed/NCBI | |
Taylor DD, Gerçel-Taylor C, Lyons KS, Stanson J and Whiteside TL: T-Cell apoptosis and suppression of T-Cell Receptor/CD3-zeta by Fas Ligand-Containing membrane vesicles shed from ovarian tumors. Clin Cancer Res. 9:5113–5119. 2003.PubMed/NCBI | |
Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL and Min WP: Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis. 35:169–173. 2005. View Article : Google Scholar : PubMed/NCBI | |
Filipazzi P, Burdek M, Villa A, Rivoltini L and Huber V: Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 22:342–349. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Yao Y and Jin M: Circ-0001068 is a novel biomarker for ovarian cancer and inducer of PD1 expression in T cells. Aging (Albany NY). 12:19095–19106. 2020. View Article : Google Scholar : PubMed/NCBI | |
Asare-Werehene M, Communal L, Carmona E, Han Y, Song YS, Burger D, Mes-Masson AM and Tsang BK: Plasma gelsolin inhibits CD8+ T-cell function and regulates glutathione production to confer chemoresistance in ovarian cancer. Cancer Res. 80:3959–3971. 2020. View Article : Google Scholar : PubMed/NCBI | |
Taylor DD and Gercel-Taylor C: Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer. 92:305–311. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shenoy GN, Loyall J, Berenson CS, Kelleher RJ Jr, Iyer V, Balu-Iyer SV, Odunsi K and Bankert RB: Sialic Acid-Dependent inhibition of T Cells by Exosomal Ganglioside GD3 in ovarian tumor microenvironments. J Immunol. 201:3750–3758. 2018. View Article : Google Scholar : PubMed/NCBI | |
Webb TJ, Li X, Giuntoli RL II, Lopez PH, Heuser C, Schnaar RL, Tsuji M, Kurts C, Oelke M and Schneck JP: Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res. 72:3744–3752. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shenoy GN, Loyall J, Maguire O, Iyer V, Kelleher RJ Jr, Minderman H, Wallace PK, Odunsi K, Balu-Iyer SV and Bankert RB: Exosomes Associated with human ovarian tumors harbor a reversible checkpoint of T-cell Responses. Cancer Immunol Res. 6:236–247. 2018. View Article : Google Scholar : PubMed/NCBI | |
Clayton A, Al-Taei S, Webber J, Mason MD and Tabi Z: Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol. 187:676–683. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kelleher RJ Jr, Balu-Iyer S, Loyall J, Sacca AJ, Shenoy GN, Peng P, Iyer V, Fathallah AM, Berenson CS, Wallace PK, et al: Extracellular vesicles present in human ovarian tumor microenvironments induce a Phosphatidylserine-Dependent arrest in the T-cell signaling cascade. Cancer Immunol Res. 3:1269–1278. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X and Wang X: The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer. Mol Cancer. 16:922017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ, Wang D, Li N, Cheng JT, Lyv YN, et al: Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol. 13:1072020. View Article : Google Scholar : PubMed/NCBI | |
Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier G, Boudaly S and Mécheri S: Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol. 170:3037–3045. 2003. View Article : Google Scholar : PubMed/NCBI | |
Robbins PD and Morelli AE: Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 14:195–208. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lindenbergh MFS, Koerhuis DGJ, Borg EGF, van't Veld EM, Driedonks TAP, Wubbolts R, Stoorvogel W and Boes M: Bystander T-Cells Support Clonal T-Cell activation by controlling the release of dendritic Cell-Derived Immune-Stimulatory extracellular vesicles. Front Immunol. 10:4482019. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Li Z, Ling W, Zhu D, Feng Z and Kong L: Exosomes derived from dendritic cells attenuate liver injury by modulating the balance of Treg and Th17 Cells after ischemia reperfusion. Cell Physiol Biochem. 46:740–756. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li QL, Bu N, Yu YC, Hua W and Xin XY: Exvivo experiments of human ovarian cancer ascites-derived exosomes presented by dendritic cells derived from umbilical cord blood for immunotherapy treatment. Clin Med Oncol. 2:461–467. 2008.PubMed/NCBI | |
Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G and Zitvogel L: Dendritic cell-derived exosomes for cancer therapy. J Clin Invest. 126:1224–1232. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ridge SM, Sullivan FJ and Glynn SA: Mesenchymal stem cells: Key players in cancer progression. Mol Cancer. 16:312017. View Article : Google Scholar : PubMed/NCBI | |
De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, Pascual CY, Aller MA, Arias J and Arnalich-Montiel F: Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Curr Mol Med. 12:574–591. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lis R, Touboul C, Raynaud CM, Malek JA, Suhre K, Mirshahi M and Rafii A: Mesenchymal cell interaction with ovarian cancer cells triggers pro-metastatic properties. PLoS One. 7:e383402012. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Tian X, Hao J, Xu G and Zhang W: Mesenchymal Stem Cell-Derived extracellular vesicles in tissue regeneration. Cell Transplant. 29:9636897209085002020. View Article : Google Scholar : PubMed/NCBI | |
Khare D, Or R, Resnick I, Barkatz C, Almogi-Hazan O and Avni B: Mesenchymal stromal Cell-Derived exosomes affect mRNA expression and function of B-Lymphocytes. Front Immunol. 9:30532018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Bucan V, Baehre H, von der Ohe J, Otte A and Hass R: Acquisition of new tumor cell properties by MSC-derived exosomes. Int J Oncol. 47:244–252. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sharma S, Alharbi M, Kobayashi M, Lai A, Guanzon D, Zuniga F, Ormazabal V, Palma C, Scholz-Romero K, Rice GE, et al: Proteomic analysis of exosomes reveals an association between cell invasiveness and exosomal bioactivity on endothelial and mesenchymal cell migration in vitro. Clin Sci (Lond). 132:2029–2044. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dean M, Fojo T and Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vera N, Acuna-Gallardo S, Grunenwald F, Caceres-Verschae A, Realini O, Acuna R, Lladser A, Illanes SE and Varas-Godoy M: Small extracellular vesicles released from ovarian cancer spheroids in response to Cisplatin Promote the Pro-Tumorigenic activity of mesenchymal stem cells. Int J Mol Sci. 20:49722019. View Article : Google Scholar | |
Qiu L, Wang J, Chen M, Chen F and Tu W: Exosomal microRNA-146a derived from mesenchymal stem cells increases the sensitivity of ovarian cancer cells to docetaxel and taxane via a LAMC2-mediated PI3K/Akt axis. Int J Mol Med. 46:609–620. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reza AMMT, Choi YJ, Yasuda H and Kim JH: Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci Rep. 6:384982016. View Article : Google Scholar : PubMed/NCBI | |
Melzer C, Rehn V, Yang Y, Bahre H, von der Ohe J and Hass R: Taxol-Loaded MSC-Derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers (Basel). 11:7982019. View Article : Google Scholar | |
Tanaka A and Sakaguchi S: Regulatory T cells in cancer immunotherapy. Cell Res. 27:109–118. 2017. View Article : Google Scholar : PubMed/NCBI | |
Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 10:942–949. 2004. View Article : Google Scholar : PubMed/NCBI | |
Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M and Whiteside TL: Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One. 5:e114692010. View Article : Google Scholar : PubMed/NCBI | |
Gabrilovich DI: Myeloid-Derived suppressor cells. Cancer Immunol Res. 5:3–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, et al: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 120:457–471. 2010.PubMed/NCBI | |
Balaburski GM, Leu JI, Beeharry N, Hayik S, Andrake MD, Zhang G, Herlyn M, Villanueva J, Dunbrack RL Jr, Yen T, et al: A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res. 11:219–229. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gobbo J, Marcion G, Cordonnier M, Dias AMM, Pernet N, Hammann A, Richaud S, Mjahed H, Isambert N, Clausse V, et al: Restoring anticancer immune response by targeting Tumor-Derived exosomes with a HSP70 Peptide Aptamer. J Natl Cancer Inst. 108:2015.(Epub ahead of print). PubMed/NCBI | |
Liu T, Han C, Wang S, Fang P, Ma Z, Xu L and Yin R: Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J Hematol Oncol. 12:862019. View Article : Google Scholar : PubMed/NCBI | |
Cho JA, Park H, Lim EH, Kim KH, Choi JS, Lee JH, Shin JW and Lee KW: Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol Oncol. 123:379–386. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, Zaid TM, Ghosh S, Birrer MJ and Mok SC: TGF-β modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 73:5016–5028. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zhang X, Wang J, Li M, Cao C, Tan J, Ma D and Gao Q: TGFβ1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget. 8:96035–96047. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu TX and Rothenberg ME: MicroRNA. J Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Li S, Li L, Li M, Guo C, Yao J and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 13:17–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, et al: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 7:111502016. View Article : Google Scholar : PubMed/NCBI | |
Dickman CT, Lawson J, Jabalee J, MacLellan SA, LePard NE, Bennewith KL and Garnis C: Selective extracellular vesicle exclusion of miR-142-3p by oral cancer cells promotes both internal and extracellular malignant phenotypes. Oncotarget. 8:15252–15266. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kanlikilicer P, Rashed MH, Bayraktar R, Mitra R, Ivan C, Aslan B, Zhang X, Filant J, Silva AM, Rodriguez-Aguayo C, et al: Ubiquitous release of exosomal tumor suppressor miR-6126 from ovarian cancer cells. Cancer Res. 76:7194–7207. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rashed MH, Kanlikilicer P, Rodriguez-Aguayo C, Pichler M, Bayraktar R, Bayraktar E, Ivan C, Filant J, Silva A, Aslan B, et al: Exosomal miR-940 maintains SRC-mediated oncogenic activity in cancer cells: A possible role for exosomal disposal of tumor suppressor miRNAs. Oncotarget. 8:20145–20164. 2017. View Article : Google Scholar : PubMed/NCBI | |
Masoumi-Dehghi S, Babashah S and Sadeghizadeh M: MicroRNA-141-3p-containing small extracellular vesicles derived from epithelial ovarian cancer cells promote endothelial cell angiogenesis through activating the JAK/STAT3 and NF-κB signaling pathways. J Cell Commun Signal. 14:233–244. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yoshimura A, Sawada K, Nakamura K, Kinose Y, Nakatsuka E, Kobayashi M, Miyamoto M, Ishida K, Matsumoto Y, Kodama M, et al: Exosomal miR-99a-5p is elevated in sera of ovarian cancer patients and promotes cancer cell invasion by increasing fibronectin and vitronectin expression in neighboring peritoneal mesothelial cells. BMC Cancer. 18:10652018. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Salomon C, Tapia J, Illanes SE, Mitchell MD and Rice GE: Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. J Transl Med. 12:42014. View Article : Google Scholar : PubMed/NCBI | |
Pan C, Stevic I, Muller V, Ni Q, Oliveira-Ferrer L, Pantel K and Schwarzenbach H: Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol Oncol. 12:1935–1948. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Sawada K, Nakamura K, Yoshimura A, Miyamoto M, Shimizu A, Ishida K, Nakatsuka E, Kodama M, Hashimoto K, et al: Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res. 11:812018. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Zhang K, Qing Y, Li D, Cui M, Jin P and Xu T: Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells. J Ovarian Res. 13:92020. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K, Sawada K, Kinose Y, Yoshimura A, Toda A, Nakatsuka E, Hashimoto K, Mabuchi S, Morishige KI, Kurachi H, et al: Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol Cancer Res. 15:78–92. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dorayappan KDP, Wallbillich JJ, Cohn DE and Selvendiran K: The biological significance and clinical applications of exosomes in ovarian cancer. Gynecol Oncol. 142:199–205. 2016. View Article : Google Scholar : PubMed/NCBI | |
Enriquez VA, Cleys ER, Da Silveira JC, Spillman MA, Winger QA and Bouma GJ: High LIN28A expressing ovarian cancer cells secrete exosomes that induce invasion and migration in HEK293 cells. Biomed Res Int. 2015:7013902015. View Article : Google Scholar : PubMed/NCBI | |
Stope MB, Klinkmann G, Diesing K, Koensgen D, Burchardt M and Mustea A: Heat Shock Protein HSP27 secretion by ovarian cancer cells is linked to intracellular expression levels, occurs independently of the endoplasmic reticulum pathway and HSP27's phosphorylation status, and is mediated by exosome liberation. Dis Markers. 2017:15753742017. View Article : Google Scholar : PubMed/NCBI | |
Nam GH, Choi Y, Kim GB, Kim S, Kim SA and Kim IS: Emerging prospects of exosomes for cancer treatment: From conventional therapy to immunotherapy. Adv Mater. 32:e20024402020. View Article : Google Scholar : PubMed/NCBI | |
Koyama Y, Ito T, Hasegawa A, Eriguchi M, Inaba T, Ushigusa T and Sugiura K: Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: A novel vaccine for cancer therapy. Biotechnol Lett. 38:1857–1866. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, Gopal A, Baek SH, Jeong SY, Lee SW, et al: A new approach for loading anticancer drugs into mesenchymal stem Cell-Derived exosome mimetics for cancer therapy. Front Pharmacol. 9:11162018. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Hang W, Sang Z, Li S, Xu W, Miao Y, Xi X and Huang Q: Identification of exosomal and non-exosomal microRNAs associated with the drug resistance of ovarian cancer. Mol Med Rep. 19:3376–3392. 2019.PubMed/NCBI | |
Zhu X, Shen H, Yin X, Yang M, Wei H, Chen Q, Feng F, Liu Y, Xu W and Li Y: Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J Exp Clin Cancer Res. 38:812019. View Article : Google Scholar : PubMed/NCBI | |
Kanlikilicer P, Bayraktar R, Denizli M, Rashed MH, Ivan C, Aslan B, Mitra R, Karagoz K, Bayraktar E, Zhang X, et al: Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine. 38:100–112. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Ha C, Dong H, Yang Z, Ma Y and Ding Y: Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int. 19:3472019. View Article : Google Scholar : PubMed/NCBI | |
Cao YL, Zhuang T, Xing BH, Li N and Li Q: Exosomal DNMT1 mediates cisplatin resistance in ovarian cancer. Cell Biochem Funct. 35:296–303. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim SM, Yang Y, Oh SJ, Hong Y, Seo M and Jang M: Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release. 266:8–16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tsou P, Katayama H, Ostrin EJ and Hanash SM: The emerging role of B Cells in tumor immunity. Cancer Res. 76:5597–5601. 2016. View Article : Google Scholar : PubMed/NCBI | |
Im EJ, Lee CH, Moon PG, Rangaswamy GG, Lee B, Lee JM, Lee JC, Jee JG, Bae JS, Kwon TK, et al: Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat Commun. 10:13872019. View Article : Google Scholar : PubMed/NCBI | |
Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, Quintero A, Lafrence M, Malik H, Santana MX and Wolfram J: Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 9:8001–8017. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pisano S, Pierini I, Gu J, Gazze A, Francis LW, Gonzalez D, Conlan RS and Corradetti B: Immune (Cell) Derived Exosome Mimetics (IDEM) as a treatment for ovarian cancer. Front Cell Dev Biol. 8:5535762020. View Article : Google Scholar : PubMed/NCBI | |
Ge L, Zhang N, Li D, Wu Y, Wang H and Wang J: Circulating exosomal small RNAs are promising non-invasive diagnostic biomarkers for gastric cancer. J Cell Mol Med. 24:14502–14513. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Liang Q, Zeng H, Zhao Q, Guo Z, Zhong R, Xie M, Cai X, Su J, He Z, et al: Exosomal CA125 as a promising biomarker for ovarian cancer diagnosis. J Cancer. 11:6445–6453. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li Q, Shi H, Tang K, Qiao L, Yu G, Ding C and Yu S: Microfluidic Raman biochip detection of exosomes: A promising tool for prostate cancer diagnosis. Lab Chip. 20:4632–4637. 2020. View Article : Google Scholar : PubMed/NCBI |