1
|
Van Hede D, Langers I, Delvenne P and
Jacobs N: Origin and immunoescape of uterine cervical cancer.
Presse Med. 43:e413–e421. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bray F, Ferlay J, Colombet M,
Soerjomataram I, Siegel RL, Torre A and Jemal A: Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J Clin.
68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Arbyn M, Weiderpass E, Bruni L, de Sanjosé
S, Saraiya M, Ferlay J and Bray F: Estimates of incidence and
mortality of cervical cancer in 2018: A worldwide analysis. Lancet
Glob Health. 8:e191–e203. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Oikonomaki M, Bady P and Hegi ME:
Ubiquitin specific peptidase 15 (USP15) suppresses glioblastoma
cell growth via stabilization of HECTD1 E3 ligase attenuating WNT
pathway activity. Oncotarget. 8:110490–110502. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Baker RT, Wang XW, Woollatt E, White JA
and Sutherland GR: Identification, functional characterization, and
chromosomal localization of USP15, a novel human ubiquitin-specific
protease related to the UNP oncoprotein, and a systematic
nomenclature for human ubiquitin-specific proteases. Genomics.
59:264–274. 1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wilkinson KD: Regulation of
ubiquitin-dependent processes by deubiquitinating enzymes. FASEBJ.
11:1245–1256. 1997. View Article : Google Scholar
|
7
|
Chung CH and Baek SH: Deubiquitinating
enzymes: Their diversity and emerging roles. Biochem Biophys Res
Commun. 266:633–640. 1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu LQ, Ilaria R Jr, Kingsley PD, Iwama A,
van Etten RA, Palis J and Zhang DE: A novel ubiquitin-specific
protease, UBP43, cloned from leukemia fusion protein
AML1-ETO-expressing mice, functions in hematopoietic cell
differentiation. Mol Cell Biol. 19:3029–3038. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Malakhov MP, Malakhova OA, Kim KI, Ritchie
KJ and Zhang DE: UBP43 (USP18) specifically removes ISG 15 from
conjugated proteins. J Biol Chem. 277:9976–9981. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Honke N, Shaabani N, Zhang DE, Hardt C and
Lang KS: Multiple functions of USP18. Cell Death Dis. 7:e24442016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Friedrich SK, Schmitz R, Bergerhausen M,
Lang J, Cham LB, Duhan V, Häussinger D, Hardt C, Addo M, Prinz M,
et al: Usp18 expression in CD169+ macrophages is
important for strong immune response after vaccination with
VSV-EBOV. Vaccines (Basel). 8:1422020. View Article : Google Scholar
|
12
|
Liu X, Li H, Zhong B, Blonska M,
Gorjestani S, Yan M, Tian Q, Zhang DE, Lin X and Dong C: USP18
inhibits NF-κB and NFAT activation during Th17 differentiation by
deubiquitinating the TAK1-TAB1 complex. J Exp Med. 210:1575–1590.
2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dziamałek-Macioszczyk P, Haraźna J and
Stompór T: Versatility of USP18 in physiology and pathophysiology.
Acta Biochim Pol. 66:389–392. 2019.PubMed/NCBI
|
14
|
Cai X, Feng S, Zhang J, Qiu W, Qian M and
Wang Y: USP18 deubiquitinates and stabilizes Twist1 to promote
epithelial-mesenchymal transition in glioblastoma cells. Am J
Cancer Res. 10:1156–1169. 2020.PubMed/NCBI
|
15
|
Tong HV, Hoan NX, Binh MT, Quyen DT, Meyer
CG, Hang DT, Hang DT, Son HA, Van Luong H, Thuan ND, et al:
Upregulation of Enzymes involved in ISGylation and Ubiquitination
in patients with hepatocellular carcinoma. Int J Med Sci.
17:347–353. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim YH, Kim WT, Jeong P, Ha YS, Kang HW,
Yun SJ, Moon SK, Choi YH, Kim IY and Kim WJ: Novel combination
markers for predicting survival in patients with muscle invasive
bladder cancer: USP18 and DGCR2. J Korean Med Sci. 29:351–356.
2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tan Y, Zhou G, Wang X, Chen W and Gao H:
USP18 promotes breast cancer growth by upregulating EGFR and
activating the AKT/Skp2 pathway. Int J Oncol. 53:371–383.
2018.PubMed/NCBI
|
18
|
Burkart C, Arimoto K, Tang T, Cong X, Xiao
N, Liu YC, Kotenko SV, Ellies LG and Zhang DE: Usp18 deficient
mammary epithelial cells create an antitumour environment driven by
hypersensitivity to IFN-λ and elevated secretion of Cxcl10. EMBO
Mol Med. 5:1035–1050. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Potu H, Sgorbissa A and Brancolini C:
Identification of USP18 as an important regulator of the
susceptibility to IFN-alpha and drug-induced apoptosis. Cancer Res.
70:655–665. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hong B, Li H, Lu Y, Zhang M, Zheng Y, Qian
J and Yi Q: USP18 is crucial for IFN-γ-mediated inhibition of B16
melanoma tumorigenesis and antitumor immunity. Mol Cancer.
13:1322014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wu S, Shang H, Cui L, Zhang Z, Zhang Y, Li
Y, Wu J, Li RK and Xie J: Targeted blockade of interleukin-8
abrogates its promotion of cervical cancer growth and metastasis.
Mol Cell Biochem. 375:69–79. 2013.PubMed/NCBI
|
22
|
François-Newton V, Magno de Freitas
Almeida G, Payelle-Brogard B, Monneron D, Pichard-Garcia L, Piehler
J, Pellegrini S and Uzé G: USP18-Based negative feedback control is
induced by type I and type III interferons and specifically
inactivates interferon a response. PLoS One. 6:e222002011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Fan W, Xie S, Zhao X, Li N, Chang C, Li L,
Yu G, Chi X, Pan Y, Niu J, et al: IFN-λ4 desensitizes the response
to IFN-α treatment in chronic hepatitis C through long-term
induction of USP18. J Gen Virol. 97:2210–2220. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dagenais-Lussier X, Loucif H, Cadorel H,
Blumberger J, Isnard S, Bego MG, Cohen ÉA, Routy JP and van
Grevenynghe J; Montreal Primary Infection Study Group, : USP18 is a
significant driver of memory CD4 T-cell reduced viability caused by
type I IFN signaling during primary HIV-1 infection. PLoS Pathog.
15:e10080602019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kang JA and Jeon YJ: Emerging roles of
USP18: From biology to pathophysiology. Int J Mol Sci. 21:68252020.
View Article : Google Scholar
|
26
|
Chinyengetere F, Sekula DJ, Lu Y, Giustini
AJ, Sanglikar A, Kawakami M, Ma T, Burkett SS, Eisenberg BL, Wells
WA, et al: Mice null for the deubiquitinase USP18 spontaneously
develop leiomyosarcomas. BMC Cancer. 15:8862015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Diao W, Guo Q, Zhu C, Song Y, Feng H, Cao
Y, Du M and Chen H: USP18 promotes cell proliferation and
suppressed apoptosis in cervical cancer cells via activating AKT
signaling pathway. BMC Cancer. 20:7412020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mustachio LM, Kawakami M, Lu Y,
Rodriguez-Canales J, Mino B, Behrens C, Wistuba I, Bota-Rabassedas
N, Yu J, Lee JJ, et al: The ISG15-specific protease USP18 regulates
stability of PTEN. Oncotarget. 8:3–14. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gu T, Lu L, An C, Zhang Y, Wu X, Xu Q and
Chen G: Negative regulation of the RLR-mediated IFN signaling
pathway by duck ubiquitin-specific protease 18 (USP18). J Cell
Physiol. 234:3995–4004. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yoon S and Seger R: The extracellular
signal-regulated kinase: Multiple substrates regulate diverse
cellular functions. Growth Factors. 24:21–44. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bang YJ, Kwon JH, Kang SH, Kim JW and Yang
YC: Increased MAPK activity and MKP-1 overexpression in human
gastric adenocarcinoma. Biochem Biophys Res Commun. 250:43–47.
1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tang Q, Wu J, Zheng F, Hann SS and Chen Y:
Emodin increases expression of insulin-like growth factor binding
protein 1 through activation of MEK/ERK/AMPKα and interaction of
PPAR γ and Sp1 in lung cancer. Cell Physiol Biochem. 41:339–357.
2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and
Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med.
193:1997–2007. 2020.
|
34
|
Lin CW, Shen SC, Chien CC, Yang LY, Shia
LT and Chen YC: 12-O-tetradecanoylphorbol-13-acetate-induced
invasion/migration of glioblastoma cells through activating
PKCalpha/ERK/NF-kappaB-dependent MMP-9 expression. J Cell Physiol.
225:472–481. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yang T, Xu F, Sheng Y, Zhang W and Chen Y:
A targeted proteomics approach to the quantitative analysis of
ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in
breast cancer. Anal Bioanal Chem. 408:7491–7503. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B,
Yang J, Pan J, Hu S, Zhang C, et al: Tumor-derived lactate induces
M2 macrophage polarization via the activation of the ERK/STAT3
signaling pathway in breast cancer. Cell Cycle. 17:428–438. 2018.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Miyake H, Hanada N, Nakamura H, Kagawa S,
Fujiwara T, Hara I, Eto H, Gohji K, Arakawa S, Kamidono S and Saya
H: Overexpression of Bcl-2 in bladder cancer cells inhibits
apoptosis induced by cisplatin and adenoviral-mediated p53 gene
transfer. Oncogene. 16:933–943. 1998. View Article : Google Scholar : PubMed/NCBI
|
38
|
Luo J, Yan R, He X and He J: Constitutive
activation of STAT3 and cyclin D1 overexpression contribute to
proliferation, migration and invasion in gastric cancer cells. Am J
Transl Res. 9:5671–5677. 2107.
|
39
|
Ragkousi K and Gibson MC: Epithelial
integrity and cell division: Concerted cell cycle control. Cell
Cycle. 17:399–400. 2018. View Article : Google Scholar : PubMed/NCBI
|