Role of aryl hydrocarbon receptor in central nervous system tumors: Biological and therapeutic implications (Review)
- Authors:
- Montserrat Zaragoza‑Ojeda
- Elisa Apatiga‑Vega
- Francisco Arenas‑Huertero
-
Affiliations: Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México - Published online on: April 11, 2021 https://doi.org/10.3892/ol.2021.12721
- Article Number: 460
-
Copyright: © Zaragoza‑Ojeda et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Schulz KH: Clinical & experimental studies on the etiology of chloracne. Arch Clinical Exp Dematol. 206:589–596. 1957.(In German). | |
Kimmig J and Schulz KH: Occupational acne (so-called chloracne) due to chlorinated aromatic cyclic ethers. Dermatologica. 115:540–546. 1957.(In German). View Article : Google Scholar : PubMed/NCBI | |
Poland A and Glover E: 2,3,7,8-Tetrachlorodibenzo-p-dioxin: A potent inducer of-aminolevulinic acid synthetase. Science. 179:476–477. 1973. View Article : Google Scholar : PubMed/NCBI | |
Richardson HL, Stier AR and Borsos-Nachtnebel E: Liver tumor inhibition and adrenal histologic responses in rats to which 3′-methyl-4-dimethylaminoazobenzene and 20-methylcholanthrene were simultaneously administrated. Cancer Res. 12:356–361. 1952.PubMed/NCBI | |
Conney AH, Miller EC and Miller JA: Substrate-induced synthesis and other properties of benzpyrene hydroxylase in rat liver. J Biol Chem. 228:753–766. 1957. View Article : Google Scholar : PubMed/NCBI | |
Nebert DW and Bausserman L: Genetic differences in the extent of aryl hydrocarbon hydroxylase induction in mouse fetal cell cultures. J Biol Chem. 245:6373–6382. 1970. View Article : Google Scholar : PubMed/NCBI | |
Nebert DW and Gelboin HV: The in vivo and in vitro induction of aryl hydrocarbon hydroxylase in mammalian cells of different species, tissues, strains, and developmental and hormonal states. Achr Biochem Biophys. 134:76–89. 1969. View Article : Google Scholar | |
Nebert DW, Negishi M, Lang MA, Hjelmeland LM and Eisen HJ: The Ah locus, a multigene family necessary for survival in a chemically adverse environment: Comparison with the immune system. Adv Genet. 21:1–51. 1982. View Article : Google Scholar : PubMed/NCBI | |
Nebert DW, Goujon FM and Gielen JE: Aryl hydrocarbon hydroxylase induction by polycyclic hydrocarbons: Simple autosomal dominant trait in the mouse. Nat New Biol. 236:107–110. 1972. View Article : Google Scholar : PubMed/NCBI | |
Nebert DW: The 1986 Bernard B. Brodie award lecture. The genetic regulation of drug-metabolizing enzymes. Drug Metab Dispos. 16:1–8. 1988.PubMed/NCBI | |
Poland A and Glover E: Comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent inducer of aryl hydrocarbon hydroxylase, with 3-methylcholanthrene. Mol Pharmacol. 10:349–359. 1974.PubMed/NCBI | |
Poland A, Glover E, Robinson JR and Nebert DW: Genetic expression of aryl hydrocarbon hydroxylase activity. Induction of monooxygenase activities and cytochrome P1-450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically ‘nonresponsive’ to other aromatic hydrocarbons. J Biol Chem. 249:5599–5606. 1974. View Article : Google Scholar : PubMed/NCBI | |
Yueh MF, Huang YH, Hiller A, Chen S, Nguyen N and Tukey RH: Involvement of the xenobiotic response element (XRE) in Ah receptor-mediated induction of human UDP-glucuronosyltransferase 1A1. J Biol Chem. 278:15002–15006. 2003. View Article : Google Scholar | |
Poland A, Glover E and Kende AS: Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem. 251:4936–4946. 1976. View Article : Google Scholar : PubMed/NCBI | |
Gasiewicz TA and Henry E: History of research on the AhR. Pohjanvirta R: The AH receptor in biology and toxicology Hoboken, New Jersey: John Wiley & Sons; pp. 3–32. 2012 | |
Gasiewicz TA and Bauman PA: Heterogeneity of the rat hepatic Ah receptor and evidence for transformation in vitro and in vivo. J Biol Chem. 262:2116–2120. 1987. View Article : Google Scholar : PubMed/NCBI | |
Reyes H, Reisz-Porszasz S and Hankinson O: Identification of the Ah receptor nuclear translocator proteins (Arnt) as a component of the DNA binding form of the Ah receptor. Science. 256:1193–1195. 1992. View Article : Google Scholar : PubMed/NCBI | |
Miller AG, Israel D and Whitlock JP Jr: Biochemical and genetic analysis of variant mouse hepatoma cells defective in the induction of benzo(a)pyrene-metabolizing enzyme activity. J Biol Chem. 258:3523–3527. 1983. View Article : Google Scholar : PubMed/NCBI | |
Jones PB, Durrin LK, Galeazzi DR and Whitlock JP Jr: Control of cytochrome P1-450 gene expression: Analysis of a dioxin-responsive enhancer system. Proc Nat Acad Sci USA. 83:2802–2806. 1986. View Article : Google Scholar : PubMed/NCBI | |
Fujisawa-Sehara A, Yamane M and Fujii-Kuriyama Y: A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: Its possible translocation to nucleus. Proc Natl Acad Sci USA. 85:5859–5863. 1988. View Article : Google Scholar : PubMed/NCBI | |
Pohjanvirta R, Korkalainen M, Moffat ID, Boutros PC and Okey AB: Role of the AHR and its structure in TCDD toxicity. Pohjanvirta R: The AH receptor in biology and toxicology Hoboken, New Jersey: John Wiley & Sons; pp. 179–196. 2012 | |
DeGroot D, He G, Fraccalvieri D, Bonati L, Pandini A and Denison MS: Ahr ligands: Promiscuity in binding and diversity in response. Pohjanvirta R: The AH receptor in biology and toxicology Hoboken, New Jersey: John Wiley & Sons; pp. 63–79. 2011, View Article : Google Scholar | |
Eguchi H, Hayashi S, Watanabe J, Gotoh O and Kawajiri K: Molecular cloning of the human Ah receptor gene promoter. Biochem Biophys Res Comm. 203:615–622. 1994. View Article : Google Scholar : PubMed/NCBI | |
Shin JH, Haggadone MD and Sunwoo JB: Transcription factor Dlx3 induces aryl hydrocarbon receptor promoter activity. Biochem Biophys Rep. 7:353–360. 2016.PubMed/NCBI | |
Tanaka G, Kanaji S, Hirano A, Arima K, Shinagawa A, Goda C, Yasunaga S, Ikizawa K, Yanagihara Y, Kubo M, et al: Induction and activation of the aryl hydrocarbon receptor by IL-4 in B cells. Int Immunol. 17:797–805. 2005. View Article : Google Scholar : PubMed/NCBI | |
Eastman Q and Grosschedl R: Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol. 11:233–240. 1999. View Article : Google Scholar : PubMed/NCBI | |
Harper PA, Riddick DS and Okey AB: Regulating the regulator: Factors that control levels and activity of the aryl hydrocarbon receptor. Biochem Pharmacol. 72:267–279. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hahn ME: Aryl hydrocarbon receptors: Diversity and evolution. Chem Biol Interact. 141:131–160. 2002. View Article : Google Scholar : PubMed/NCBI | |
Burbach KM, Poland A and Bradfield CA: Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci USA. 89:8185–8189. 1992. View Article : Google Scholar : PubMed/NCBI | |
Ma Q: Overview of AHR functional domains and the classical AHR signaling pathway: Induction of drug metabolizing enzymes. The AH Receptor in Biology and Toxicology. Pohjanvirta R: John Wiley & Sons; Hoboken, New Jersey: pp. 35–45. 2012 | |
Ma Q and Whitlock JP Jr: A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Chem. 272:8878–8884. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ma Q, Dong L and Whitlock JP Jr: Transcriptional activation by the mouse Ah receptor. Interplay between multiple stimulatory and inhibitory functions. J Biol Chem. 270:12697–12703. 1995. View Article : Google Scholar : PubMed/NCBI | |
Murray IA and Perdew GH: Role of the chaperone proteins in ahr function. The AH Receptor in Biology and Toxicology. Pohjanvirta R: John Wiley & Sons; Hoboken, New Jersey: pp. 47–61. 2011, View Article : Google Scholar | |
Chen HS and Perdew GH: Subunit composition of the heteromeric cytosolic aryl hydrocarbon receptor complex. J Biol Chem. 269:27554–27558. 1994. View Article : Google Scholar : PubMed/NCBI | |
Meyer BK, Pray-Grant MG, Vanden Heuvel JP and Perdew GH: Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol Cel Biol. 18:978–988. 1998. View Article : Google Scholar | |
Carver LA, LaPres JJ, Jain S, Dunham EE and Bradfield CA: Characterization of the Ah receptor-associated protein, ARA9. J Biol Chem. 273:33580–33587. 1998. View Article : Google Scholar : PubMed/NCBI | |
Schreiber SL: Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science. 251:283–287. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ma Q and Baldwin KT: 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway. Role of the transcription activation and DNA binding of AhR. J Biol Chem. 275:8432–8438. 2000. View Article : Google Scholar : PubMed/NCBI | |
Roberts BJ and Whitelaw ML: Degradation of the basic helix-loop-helix/Per-ARNT-Sim homology domain dioxin receptor via the ubiquitin/proteasome pathway. J Biol Chem. 274:36351–36356. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lo RS and Massagué J: Ubiquitin-dependent degradation of TGF-beta-activated Smad2. Nat Cell Biol. 1:472–478. 1999. View Article : Google Scholar : PubMed/NCBI | |
Floyd ZE, Trausch-Azar JS, Reinstein E, Ciechanover A and Schwartz AL: The nuclear ubiquitin-proteasome system degrades MyoD. J Biol Chem. 276:22468–22475. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ikuta T, Eguchi H, Tachibana T, Yoneda Y and Kawajiri K: Nuclear localization and export signals of the human aryl hydrocarbon receptor. J Biol Chem. 273:2895–2904. 1998. View Article : Google Scholar : PubMed/NCBI | |
Fukunaga BN, Probst MR, Reisz-Porszasz S and Hankinson O: Identification of functional domains of the aryl hydrocarbon receptor. J Biol Chem. 270:29270–29278. 1995. View Article : Google Scholar : PubMed/NCBI | |
Reisz-Porszasz S, Probst MR, Fukunaga BN and Hankinson O: Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol Cell Biol. 14:6075–6086. 1994. View Article : Google Scholar : PubMed/NCBI | |
Soshilov A and Denison MS: Role of the Per/Arnt/Sim domains in ligand-dependent transformation of the aryl hydrocarbon receptor. J Biol Chem. 283:32995–33005. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mahon MJ and Gasiewicz TA: Ah receptor phosphorylation: Localization of phosphorylation sites to the C-terminal half of the protein. Arch Biochem Biophys. 318:166–174. 1995. View Article : Google Scholar : PubMed/NCBI | |
Swanson H: Dioxin response elements and regulation of gene transcription. The AH Receptor in Biology and Toxicology. Pohjanvirta R: John Wiley & Sons; Hoboken, New Jersey: pp. 81–91. 2012 | |
Bacsi S, Reisz-Porszasz S and Hankinson O: Orientation of the heterodimeric aryl hydrocarbon (dioxin) receptor complex on its asymmetric DNA recognition sequence. Mol Pharmacol. 47:432–438. 1995.PubMed/NCBI | |
Ma Q: Induction and superinduction of 2,3,7,8-tetrachlorodibenzo-rho-dioxin-inducible poly(ADP-ribose) polymerase: Role of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator transcription activation domains and a labile transcription repressor. Arch Biochem Biophys. 404:309–316. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gasiewicz TA, Henry EC and Collins LL: Expression and activity of aryl hydrocarbon receptors in development and cancer. Crit Review Eukaryotic Gene Exp. 18:279–321. 2008. View Article : Google Scholar | |
Barouki R, Coumoul X and Fernandez-Salguero PM: The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett. 581:3608–3615. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mulero-Navarro S and Fernandez-Salguero PM: New trends in Aryl hydrocarbon receptor biology. Front Cell Dev Biol. 4:452016. View Article : Google Scholar : PubMed/NCBI | |
Larigot L, Juricek L, Dairou J and Coumoul X: AhR signaling pathways and regulatory functions. Biochim Open. 7:1–9. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bock KW: Aryl hydrocarbon receptor (AHR): From selected human target genes and crosstalk with transcription factors to multiple AHR functions. Biochem Pharmacol. 168:65–70. 2019. View Article : Google Scholar : PubMed/NCBI | |
Josyula N, Andersen ME, Kaminski NE, Dere E, Zacharewski TR and Bhattacharya S: Gene co-regulation and co-expression in the aryl hydrocarbon receptor-mediated transcriptional regulatory network in the mouse liver. Arch Toxicol. 94:113–126. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gu YZ, Hogenesch JB and Bradfield CA: The PAS superfamily: Sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol. 40:519–561. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ge NL and Elferink CJ: A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. Linking dioxin signaling to the cell cycle. J Biol Chem. 273:22708–22713. 1998. View Article : Google Scholar : PubMed/NCBI | |
Huang G and Elferink CJ: Multiple mechanisms are involved in Ah receptor-mediated cell cycle arrest. Mol Pharmacol. 67:88–96. 2005. View Article : Google Scholar : PubMed/NCBI | |
Marlowe JL, Knudsen ES, Schwemberger S and Puga A: The aryl hydrocarbon receptor displaces p300 from E2F-dependent promoters and represses S phase-specific gene expression. J Biol Chem. 279:29013–29022. 2004. View Article : Google Scholar : PubMed/NCBI | |
Elferink CJ, Ge NL and Levine A: Maximal aryl hydrocarbon receptor activity depends on an interaction with the retinoblastoma protein. Mol Pharmacol. 59:664–673. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jackson DP, Li H, Mitchell KA, Joshi AD and Elferink C: Ah receptor-mediated suppression of liver regeneration through NC-XRE-driven p21Cip1 expression. J Mol Pharmacol. 85:533–541. 2014. View Article : Google Scholar | |
Vogel CF, Sciullo E and Matsumura F: Involvement of RelB in aryl hydrocarbon receptor-mediated induction of chemokines. Biochem Biophys Res Commun. 363:722–726. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Ke S, Denison M, Rabson A and Gallo M: Ah receptor and NF-kappaB interactions, a potential mechanism for dioxin toxicity. J Biol Chem. 274:510–515. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hollingshead BD, Beischlag TV, Dinatale BC, Ramadoss P and Perdew GH: Inflammatory signaling and aryl hydrocarbon receptor mediate synergistic induction of interleukin 6 in MCF-7 cells. Cancer Res. 68:3609–3617. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim DW, Gazourian L, Quadri SA, Romieu-Mourez R, Sherr DH and Sonenshein GE: The RelA NF-kappaB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene. 19:5498–5506. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yeager RL, Reisman SA, Aleksunes LM and Klaassen CD: Introducing the ‘TCDD-inducible AhR-Nrf2 gene battery’. Toxicol Sci. 111:238–246. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang L, He X, Szklarz GD, Bi Y, Rojanasakul Y and Ma Q: The aryl hydrocarbon receptor interacts with nuclear factor erythroid 2-related factor 2 to mediate induction of NAD(P)H:quinoneoxidoreductase 1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Biochem Biophys. 537:31–38. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zacharewski TR, Bondy KL, McDonell P and Wu ZF: Antiestrogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on 17 beta-estradiol-induced pS2 expression. Cancer Res. 54:2707–2713. 1994.PubMed/NCBI | |
Gillesby BE, Stanostefano M, Porter W, Safe S, Wu ZF and Zacharewski TR: Identification of a motif within the 5′ regulatory region of pS2 which is responsible for AP-1 binding and TCDD-mediated suppression. Biochemistry. 36:6080–6089. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ohtake F, Fujii-Kuriyama Y and Kato S: AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem Pharmacol. 77:474–484. 2009. View Article : Google Scholar : PubMed/NCBI | |
Peters JM, Narotsky MG, Elizondo G, Fernandez-Salguero PM, Gonzalez FJ and Abbott BD: Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. Toxicol Sci. 47:86–92. 1999. View Article : Google Scholar : PubMed/NCBI | |
Dere E, Lo R, Celius T, Matthews J and Zacharewski TR: Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver. BMC Genomics. 12:365–375. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tijet N, Boutros PC, Moffat ID, Okey AB, Tuomisto J and Pohjanvirta R: Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Mol Pharmacol. 69:140–153. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mitchell KA, Lockhart CA, Huang G and Elferink CJ: Sustained aryl hydrocarbon receptor activity attenuates liver regeneration. Mol Pharmacol. 70:163–170. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huang G and Elferink CJ: A novel nonconsensus xenobiotic response element capable of mediating aryl hydrocarbon receptor-dependent gene expression. Mol Pharmacol. 81:338–347. 2012. View Article : Google Scholar : PubMed/NCBI | |
Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell-Crowley L, Swindell E, et al: Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell. 6:387–400. 1995. View Article : Google Scholar : PubMed/NCBI | |
Jackson DP, Joshi AD and Elferink CJ: Ah receptor pathway intricacies; signaling through diverse protein partners and DNA-motifs. Toxicol Res (Camb). 4:1143–1158. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wilson SR, Joshi AD and Elferink CJ: The tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon receptor DNA binding partner. J Pharmacol Exp Ther. 345:419–429. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Shields JM, Sogawa K, Fujii-Kuriyama Y and Yang VW: The gut-enriched Krüppel-like factor suppresses the activity of the CYP1A1 promoter in an Sp1-dependent fashion. J Biol Chem. 273:17917–17925. 1998. View Article : Google Scholar : PubMed/NCBI | |
Philipsen S and Suske G: A tale of three fingers: The family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res. 27:2991–3000. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jeng YM and Hsu HC: KLF6, a putative tumor suppressor gene, is mutated in astrocytic gliomas. Int J Cancer. 105:625–629. 2003. View Article : Google Scholar : PubMed/NCBI | |
Andreoli V, Gehrau RC and Bocco JL: Biology of Krüppel-like factor 6 transcriptional regulator in cell life and death. IUBMB Life. 62:896–905. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rubinstein M, Idelman G, Plymate SR, Narla G, Friedman SL and Werner H: Transcriptional activation of the insulin-like growth factor I receptor gene by the Kruppel-like factor 6 (KLF6) tumor suppressor protein: Potential interactions between KLF6 and p53. Endocrinology. 145:3769–3777. 2004. View Article : Google Scholar : PubMed/NCBI | |
YangLShiPZhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Sig Transduct Target Ther. 5:82020. View Article : Google Scholar | |
Pearson JRD and Regad T: Targeting cellular pathways in glioblastoma multiforme. Sig Transduct Target Ther. 2:170402017. View Article : Google Scholar | |
Murray IA, Patterson AD and Perdew GH: Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat Rev Cancer. 14:801–814. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xue P, Fu J and Zhou Y: The aryl hydrocarbon receptor and tumor immunity. Front Immunol. 9:2862018. View Article : Google Scholar : PubMed/NCBI | |
Hayashibara T, Yamada Y, Mori N, Harasawa H, Sugahara K, Miyanishi T, Kamihira S and Tomonaga M: Possible involvement of aryl hydrocarbon receptor (AhR) in adult T-cell leukemia (ATL) leukemogenesis: Constitutive activation of AhR in ATL. Biochem Biophys Res Commun. 300:128–134. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gentil M, Hugues P, Desterke C, Telliam G, Sloma I, Souza LEB, Baykal S, Artus J, Griscelli F, Guerci A, et al: Aryl hydrocarbon receptor (AHR) is a novel druggable pathway controlling malignant progenitor proliferation in chronic myeloid leukemia (CML). PLoS One. 13:e02009232018. View Article : Google Scholar : PubMed/NCBI | |
Sanna S, Satta G, Padoan M, Piro S, Gambelunghe A, Miligi L, Ferri GM, Magnani C, Muzi G, Rigacci L, et al: Activation of the aryl hydrocarbon receptor and risk of lymphoma subtypes. Int J Mol Epidemiol Genet. 8:40–44. 2017.PubMed/NCBI | |
Wang K, Li Y, Jiang YZ, Dai CF, Patankar MS, Song JS and Zheng J: An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells. Cancer Lett. 340:63–71. 2013. View Article : Google Scholar : PubMed/NCBI | |
Perez AIL and Bradshaw TD: Exploring new molecular targets in advanced ovarian cancer: The aryl hydrocarbon receptor (AhR) and antitumor benzothiazole ligands as potential therapeutic candidates. Current Trends in Cancer Management. 2018. | |
Tsay JJ, Tchou-Wong KM, Greenberg AK, Pass H and Rom WN: Aryl hydrocarbon receptor and lung cancer. Anticancer Res. 33:1247–1256. 2013.PubMed/NCBI | |
Guerrina N, Traboulsi H, Eidelman DH and Baglole CJ: The aryl hydrocarbon receptor and the maintenance of lung health. Int J Mol Sci. 19:38822018. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wu X, Zhang F, Han L, Bao G, He X and Xu Z: AhR expression is increased in hepatocellular carcinoma. J Mol Histol. 44:455–461. 2013. View Article : Google Scholar : PubMed/NCBI | |
John K, Lahoti TS, Wagner K, Hughes JM and Perdew GH: The Ah receptor regulates growth factor expression in head and neck squamous cell carcinoma cell lines. Mol Carcinog. 53:765–776. 2014. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wesseling P and Capper D: WHO 2016 classification of gliomas. Neuropathol Appl Neurobiol. 44:139–150. 2018. View Article : Google Scholar : PubMed/NCBI | |
Loeffler S, Fayard B, Weis J and Weissenberger J: Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer. 115:202–213. 2005. View Article : Google Scholar : PubMed/NCBI | |
Botella LM, Sanz-Rodriguez F, Komi Y, Fernandez-L A, Varela E, Garrido-Martin EM, Narla G, Friedman SL and Kojima S: TGF-beta regulates the expression of transcription factor KLF6 and its splice variants and promotes co-operative transactivation of common target genes through a Smad3-Sp1-KLF6 interaction. Biochem J. 419:485–495. 2009. View Article : Google Scholar : PubMed/NCBI | |
Merk BC, Owens JL, Lopes MB, Silva CM and Hussaini IM: STAT6 expression in glioblastoma promotes invasive growth. BMC Cancer. 11:1842011. View Article : Google Scholar : PubMed/NCBI | |
Gu A, Ji G, Jiang T, Lu A, You Y, Liu N, Luo C, Yan W and Zhao P: Contributions of aryl hydrocarbon receptor genetic variants to the risk of glioma and PAH-DNA adducts. Toxicol Sci. 128:357–364. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li H xing, Peng X xiao and Zong Q: Cigarette smoking and risk of adult glioma: A meta-analysis of 24 observational studies involving more than 2.3 million individuals. Onco Targets Ther. 9:3511–3523. 2016.PubMed/NCBI | |
Maier MS, Legare ME and Hanneman WH: The aryl hydrocarbon receptor agonist 3,3′,4,4′,5-pentachlorobiphenyl induces distinct patterns of gene expression between hepatoma and glioma cells: Chromatin remodeling as a mechanism for selective effects. Neurotoxicology. 28:594–612. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gramatzki D, Pantazis G, Schittenhelm J, Tabatabai G, Köhle C, Wick W, Schwarz M, Weller M and Tritschler I: Aryl hydrocarbon receptor inhibition downregulates the TGF-beta/Smad pathway in human glioblastoma cells. Oncogene. 28:2593–2605. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pećina-Šlaus N, Kafka A, Tomas D, Marković L, Okštajner PK, Sukser V and Krušlin B: Wnt signaling transcription factors TCF-1 and LEF-1 are upregulated in malignant astrocytic brain tumors. Histol Histopathol. 29:1557–1564. 2014. | |
Djuzenova CS, Blassl C, Roloff K, Kuger S, Katzer A, Niewidok N, Günther N, Polat B, Sukhorukov VL and Flentje M: Hsp90 inhibitor NVP-AUY922 enhances radiation sensitivity of tumor cell lines under hypoxia. Cancer Biol Ther. 13:425–434. 2012. View Article : Google Scholar : PubMed/NCBI | |
Seznec J, Silkenstedt B and Naumann U: Therapeutic effects of the Sp1 inhibitor mithramycin A in glioblastoma. J Neurooncol. 101:365–377. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chiba Y, Todoroki M, Nishida Y, Tanabe M and Misawa M: A novel STAT6 inhibitor AS1517499 ameliorates antigen-induced bronchial hypercontractility in mice. Am J Respir Cell Mol Biol. 41:516–524. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jin UH, Karki K, Cheng Y, Michelhaugh SK, Mittal S and Safe S: The aryl hydrocarbon receptor is a tumor suppressor-like gene in glioblastoma. J Biol Chem. 294:11342–11353. 2019. View Article : Google Scholar : PubMed/NCBI | |
de Robles P, Fiest KM, Frolkis AD, Pringsheim T, Atta C, St Germaine-Smith C, Day L, Lam D and Jette N: The worldwide incidence and prevalence of primary brain tumors: A systematic review and meta-analysis. Neuro Oncol. 17:776–783. 2015. View Article : Google Scholar : PubMed/NCBI | |
Girardi F, Allemani C and Coleman MP: Worldwide trends in survival from common childhood brain tumors: A systematic review. J Glob Oncol. 5:1–25. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 21 (Suppl 5):v1–v100. 2019. View Article : Google Scholar | |
Gilbertson RJ and Ellison DW: The origins of medulloblastoma subtypes. Annu Rev Pathol. 3:341–365. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, Schüller U, Machold R, Fishell G, Rowitch DH, et al: Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell. 14:135–145. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rossi A, Caracciolo V, Russo G, Reiss K and Giordano A: Medulloblastoma: From molecular pathology to therapy. Clin Cancer Res. 14:971–976. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ramaswamy V and Taylor MD: Medulloblastoma: From myth to molecular. J Clin Oncol. 35:2355–2363. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mulhern RK, Merchant TE, Gajjar A, Reddick WE and Kun LE: Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 5:399–408. 2004. View Article : Google Scholar : PubMed/NCBI | |
Doussouki MEI, Gajjar A and Chamdine O: Molecular genetics of medulloblastoma in children: Diagnostic, therapeutic and prognostic implications. Future Neurol. 14:FNL82019. View Article : Google Scholar | |
Miranda Kuzan-Fischer C, Juraschka K and Taylor MD: Medulloblastoma in the molecular era. J Korean Neurosurg Soc. 61:292–301. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dever DP and Opanashuk LA: The aryl hydrocarbon receptor contributes to the proliferation of human medulloblastoma cells. Mol Pharmacol. 81:669–678. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Guessous F, Johnson EB, Eberhart CG, Li XN, Shu Q, Fan S, Lal B, Laterra J, Schiff D and Abounader R: Functional and molecular interactions between the HGF/c-Met pathway and c-Myc in large-cell medulloblastoma. Lab Invest. 88:98–111. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sarić N, Selby M, Ramaswamy V, Kool M, Stockinger B, Hogstrand C, Williamson D, Marino S, Taylor MD, Clifford SC and Basson MA: The AHR pathway represses TGFβ-SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. Sci Rep. 10:1482020. View Article : Google Scholar | |
Johnsen JI, Dyberg C, Fransson S and Wickström M: Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol Res. 131:164–176. 2018. View Article : Google Scholar : PubMed/NCBI | |
Johnsen JI, Dyberg C and Wickström M: Neuroblastoma-A neural crest derived embryonal malignancy. Front Mol Neurosci. 12:92019. View Article : Google Scholar : PubMed/NCBI | |
Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, Hesseling P, Shin HY and Stiller CA; IICC-3 contributors, : International incidence of childhood cancer, 2001-10: A population-based registry study. Lancet Oncol. 8:719–31. 2017. View Article : Google Scholar | |
Panagopoulou P, Georgakis MK, Baka M, Moschovi M, Papadakis V, Polychronopoulou S, Kourti M, Hatzipantelis E, Stiakaki E, Dana H, et al: Persisting inequalities in survival patterns of childhood neuroblastoma in Southern and Eastern Europe and the effect of socio-economic development compared with those of the US. Eur J Cancer. 96:44–53. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM and Kholodenko RV: Neuroblastoma origin and therapeutic targets for immunotherapy. J Immunol Res. 2018:73942682018. View Article : Google Scholar : PubMed/NCBI | |
Allen-Rhoades W, Whittle SB and Rainusso N: Pediatric solid tumors of infancy: An overview. Pediatr Rev. 39:57–67. 2018. View Article : Google Scholar : PubMed/NCBI | |
Akahoshi E, Yoshimura S and Ishihara-Sugano M: Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: Neurotoxicology study. Environ Health. 5:242006. View Article : Google Scholar : PubMed/NCBI | |
Wu PY, Liao YF, Juan HF, Huang HC, Wang BJ, Lu YL, Yu IS, Shih YY, Jeng YM, Hsu WM and Lee H: Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma. PLoS One. 9:887952014. View Article : Google Scholar | |
Latchney SE, Hein AM, O'Banion MK, DiCicco-Bloom E and Opanashuk LA: Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory. J Neurochem. 125:430–445. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Liu D, Murray TJ, Mitchell G C, Hesterman EV, Karchner SI, Merson RR, Hahn ME and Sherr DH: The aryl hydrocarbon receptor constitutively represses c-myc transcription in human mammary tumor cells. Oncogene. 24:7869–7881. 2005. View Article : Google Scholar : PubMed/NCBI | |
Puga A, Barnes SJ, Dalton TP, Chang Cy, Knudsen ES and Maier MA: Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J Biol Chem. 275:2943–2950. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wu PY, Chuang PY, Chang GD, Chan YY, Tsai TC, Wang BJ, Lin KH, Hsu WM, Liao YF and Lee H: Novel endogenous ligands of aryl hydrocarbon receptor mediate neural development and differentiation of neuroblastoma. ACS Chem Neurosci. 10:4031–4042. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peters JC: Tryptophan nutrition and metabolism: An overview. Kynurenine and Serotonin Pathways: Progress in Tryptophan Research. Schwarcz R, Young SN and Brown RR: Plenum Press Div Plenum Publishing Corp.; New York: pp. 345–358. 1991, View Article : Google Scholar | |
Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O and Brew BJ: Characterization of the kynurenine pathway in human neurons. J Neurosci. 27:12884–12892. 2007. View Article : Google Scholar : PubMed/NCBI | |
Coggan SE, Smythe GA, Bilgin A and Grant RS: Age and circadian influences on picolinic acid concentrations in human cerebrospinal fluid. J Neurochem. 108:1220–1225. 2009. View Article : Google Scholar : PubMed/NCBI | |
Adams S, Braidy N, Bessede A, Brew BJ, Grant R, Teo C and Guillemin GJ: The kynurenine pathway in brain tumor pathogenesis. Cancer Res. 72:5649–5657. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ye ZC and Sontheimer H: Glioma cells release excitotoxic concentrations of glutamate. Cancer Res. 59:4383–4391. 1999.PubMed/NCBI | |
Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, et al: An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 478:197–203. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Qin C and Safe SH: Flavonoids as aryl hydrocarbon receptor agonists/antagonists: Effects of structure and cell context. Environ Health Perspect. 111:1877–1882. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kaiser H, Parker E and Hamrick MW: Kynurenine signaling through the aryl hydrocarbon receptor: Implications for aging and healthspan. Exp Gerontol. 130:1107972019. View Article : Google Scholar : PubMed/NCBI |